মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x+3y=7,7x-3y=4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x+3y=7
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=-3y+7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{4}\left(-3y+7\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{4}y+\frac{7}{4}
\frac{1}{4} বাৰ -3y+7 পুৰণ কৰক৷
7\left(-\frac{3}{4}y+\frac{7}{4}\right)-3y=4
অন্য সমীকৰণত x-ৰ বাবে \frac{-3y+7}{4} স্থানাপন কৰক, 7x-3y=4৷
-\frac{21}{4}y+\frac{49}{4}-3y=4
7 বাৰ \frac{-3y+7}{4} পুৰণ কৰক৷
-\frac{33}{4}y+\frac{49}{4}=4
-3y লৈ -\frac{21y}{4} যোগ কৰক৷
-\frac{33}{4}y=-\frac{33}{4}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{49}{4} বিয়োগ কৰক৷
y=1
-\frac{33}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{-3+7}{4}
x=-\frac{3}{4}y+\frac{7}{4}-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{3}{4} লৈ \frac{7}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x+3y=7,7x-3y=4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&3\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&3\\7&-3\end{matrix}\right))\left(\begin{matrix}4&3\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&-3\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
\left(\begin{matrix}4&3\\7&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&-3\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&-3\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-3\times 7}&-\frac{3}{4\left(-3\right)-3\times 7}\\-\frac{7}{4\left(-3\right)-3\times 7}&\frac{4}{4\left(-3\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}7\\4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{1}{11}\\\frac{7}{33}&-\frac{4}{33}\end{matrix}\right)\left(\begin{matrix}7\\4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 7+\frac{1}{11}\times 4\\\frac{7}{33}\times 7-\frac{4}{33}\times 4\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
গণনা কৰক৷
x=1,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x+3y=7,7x-3y=4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7\times 4x+7\times 3y=7\times 7,4\times 7x+4\left(-3\right)y=4\times 4
4x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
28x+21y=49,28x-12y=16
সৰলীকৰণ৷
28x-28x+21y+12y=49-16
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 28x+21y=49-ৰ পৰা 28x-12y=16 হৰণ কৰক৷
21y+12y=49-16
-28x লৈ 28x যোগ কৰক৷ চৰ্তাৱলী 28x আৰু -28x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
33y=49-16
12y লৈ 21y যোগ কৰক৷
33y=33
-16 লৈ 49 যোগ কৰক৷
y=1
33-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
7x-3=4
7x-3y=4-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x=7
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
x=1
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷