মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x+2y=6,5x-3y=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x+2y=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=-2y+6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=\frac{1}{4}\left(-2y+6\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{4} বাৰ -2y+6 পুৰণ কৰক৷
5\left(-\frac{1}{2}y+\frac{3}{2}\right)-3y=9
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+3}{2} স্থানাপন কৰক, 5x-3y=9৷
-\frac{5}{2}y+\frac{15}{2}-3y=9
5 বাৰ \frac{-y+3}{2} পুৰণ কৰক৷
-\frac{11}{2}y+\frac{15}{2}=9
-3y লৈ -\frac{5y}{2} যোগ কৰক৷
-\frac{11}{2}y=\frac{3}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{15}{2} বিয়োগ কৰক৷
y=-\frac{3}{11}
-\frac{11}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{2}\left(-\frac{3}{11}\right)+\frac{3}{2}
x=-\frac{1}{2}y+\frac{3}{2}-ত y-ৰ বাবে -\frac{3}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{3}{22}+\frac{3}{2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{2} বাৰ -\frac{3}{11} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{18}{11}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{3}{22} লৈ \frac{3}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{18}{11},y=-\frac{3}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x+2y=6,5x-3y=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&2\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&2\\5&-3\end{matrix}\right))\left(\begin{matrix}4&2\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\5&-3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
\left(\begin{matrix}4&2\\5&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\5&-3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\5&-3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-2\times 5}&-\frac{2}{4\left(-3\right)-2\times 5}\\-\frac{5}{4\left(-3\right)-2\times 5}&\frac{4}{4\left(-3\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\\frac{5}{22}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 6+\frac{1}{11}\times 9\\\frac{5}{22}\times 6-\frac{2}{11}\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{11}\\-\frac{3}{11}\end{matrix}\right)
গণনা কৰক৷
x=\frac{18}{11},y=-\frac{3}{11}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x+2y=6,5x-3y=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 4x+5\times 2y=5\times 6,4\times 5x+4\left(-3\right)y=4\times 9
4x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
20x+10y=30,20x-12y=36
সৰলীকৰণ৷
20x-20x+10y+12y=30-36
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 20x+10y=30-ৰ পৰা 20x-12y=36 হৰণ কৰক৷
10y+12y=30-36
-20x লৈ 20x যোগ কৰক৷ চৰ্তাৱলী 20x আৰু -20x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
22y=30-36
12y লৈ 10y যোগ কৰক৷
22y=-6
-36 লৈ 30 যোগ কৰক৷
y=-\frac{3}{11}
22-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-3\left(-\frac{3}{11}\right)=9
5x-3y=9-ত y-ৰ বাবে -\frac{3}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+\frac{9}{11}=9
-3 বাৰ -\frac{3}{11} পুৰণ কৰক৷
5x=\frac{90}{11}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{9}{11} বিয়োগ কৰক৷
x=\frac{18}{11}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{18}{11},y=-\frac{3}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷