y, x-ৰ বাবে সমাধান কৰক
x=39
y=15
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3y-6-x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
3y-x=6
উভয় কাষে 6 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
x-9-2y=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x-2y=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
3y-x=6,-2y+x=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3y-x=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
3y=x+6
সমীকৰণৰ দুয়োটা দিশতে x যোগ কৰক৷
y=\frac{1}{3}\left(x+6\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{1}{3}x+2
\frac{1}{3} বাৰ x+6 পুৰণ কৰক৷
-2\left(\frac{1}{3}x+2\right)+x=9
অন্য সমীকৰণত y-ৰ বাবে \frac{x}{3}+2 স্থানাপন কৰক, -2y+x=9৷
-\frac{2}{3}x-4+x=9
-2 বাৰ \frac{x}{3}+2 পুৰণ কৰক৷
\frac{1}{3}x-4=9
x লৈ -\frac{2x}{3} যোগ কৰক৷
\frac{1}{3}x=13
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x=39
3-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
y=\frac{1}{3}\times 39+2
y=\frac{1}{3}x+2-ত x-ৰ বাবে 39-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=13+2
\frac{1}{3} বাৰ 39 পুৰণ কৰক৷
y=15
13 লৈ 2 যোগ কৰক৷
y=15,x=39
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3y-6-x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
3y-x=6
উভয় কাষে 6 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
x-9-2y=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x-2y=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
3y-x=6,-2y+x=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-\left(-2\right)\right)}&-\frac{-1}{3-\left(-\left(-2\right)\right)}\\-\frac{-2}{3-\left(-\left(-2\right)\right)}&\frac{3}{3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6+9\\2\times 6+3\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}15\\39\end{matrix}\right)
গণনা কৰক৷
y=15,x=39
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
3y-6-x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
3y-x=6
উভয় কাষে 6 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
x-9-2y=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x-2y=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
3y-x=6,-2y+x=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-2\times 3y-2\left(-1\right)x=-2\times 6,3\left(-2\right)y+3x=3\times 9
3y আৰু -2y সমান কৰিবৰ বাবে, -2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
-6y+2x=-12,-6y+3x=27
সৰলীকৰণ৷
-6y+6y+2x-3x=-12-27
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -6y+2x=-12-ৰ পৰা -6y+3x=27 হৰণ কৰক৷
2x-3x=-12-27
6y লৈ -6y যোগ কৰক৷ চৰ্তাৱলী -6y আৰু 6y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-x=-12-27
-3x লৈ 2x যোগ কৰক৷
-x=-39
-27 লৈ -12 যোগ কৰক৷
x=39
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-2y+39=9
-2y+x=9-ত x-ৰ বাবে 39-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-2y=-30
সমীকৰণৰ দুয়োটা দিশৰ পৰা 39 বিয়োগ কৰক৷
y=15
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=15,x=39
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}