মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x-7y=2,-5x+2y=-13
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-7y=2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=7y+2
সমীকৰণৰ দুয়োটা দিশতে 7y যোগ কৰক৷
x=\frac{1}{3}\left(7y+2\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{7}{3}y+\frac{2}{3}
\frac{1}{3} বাৰ 7y+2 পুৰণ কৰক৷
-5\left(\frac{7}{3}y+\frac{2}{3}\right)+2y=-13
অন্য সমীকৰণত x-ৰ বাবে \frac{7y+2}{3} স্থানাপন কৰক, -5x+2y=-13৷
-\frac{35}{3}y-\frac{10}{3}+2y=-13
-5 বাৰ \frac{7y+2}{3} পুৰণ কৰক৷
-\frac{29}{3}y-\frac{10}{3}=-13
2y লৈ -\frac{35y}{3} যোগ কৰক৷
-\frac{29}{3}y=-\frac{29}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{10}{3} যোগ কৰক৷
y=1
-\frac{29}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{7+2}{3}
x=\frac{7}{3}y+\frac{2}{3}-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{7}{3} লৈ \frac{2}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-7y=2,-5x+2y=-13
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-13\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\left(-5\right)\right)}&-\frac{-7}{3\times 2-\left(-7\left(-5\right)\right)}\\-\frac{-5}{3\times 2-\left(-7\left(-5\right)\right)}&\frac{3}{3\times 2-\left(-7\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}&-\frac{7}{29}\\-\frac{5}{29}&-\frac{3}{29}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}\times 2-\frac{7}{29}\left(-13\right)\\-\frac{5}{29}\times 2-\frac{3}{29}\left(-13\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
গণনা কৰক৷
x=3,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-7y=2,-5x+2y=-13
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-5\times 3x-5\left(-7\right)y=-5\times 2,3\left(-5\right)x+3\times 2y=3\left(-13\right)
3x আৰু -5x সমান কৰিবৰ বাবে, -5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
-15x+35y=-10,-15x+6y=-39
সৰলীকৰণ৷
-15x+15x+35y-6y=-10+39
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -15x+35y=-10-ৰ পৰা -15x+6y=-39 হৰণ কৰক৷
35y-6y=-10+39
15x লৈ -15x যোগ কৰক৷ চৰ্তাৱলী -15x আৰু 15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
29y=-10+39
-6y লৈ 35y যোগ কৰক৷
29y=29
39 লৈ -10 যোগ কৰক৷
y=1
29-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-5x+2=-13
-5x+2y=-13-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-5x=-15
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x=3
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷