x, y-ৰ বাবে সমাধান কৰক
x=9
y=9
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3x-5y=-18,3x-2y=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-5y=-18
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=5y-18
সমীকৰণৰ দুয়োটা দিশতে 5y যোগ কৰক৷
x=\frac{1}{3}\left(5y-18\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{3}y-6
\frac{1}{3} বাৰ 5y-18 পুৰণ কৰক৷
3\left(\frac{5}{3}y-6\right)-2y=9
অন্য সমীকৰণত x-ৰ বাবে \frac{5y}{3}-6 স্থানাপন কৰক, 3x-2y=9৷
5y-18-2y=9
3 বাৰ \frac{5y}{3}-6 পুৰণ কৰক৷
3y-18=9
-2y লৈ 5y যোগ কৰক৷
3y=27
সমীকৰণৰ দুয়োটা দিশতে 18 যোগ কৰক৷
y=9
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{3}\times 9-6
x=\frac{5}{3}y-6-ত y-ৰ বাবে 9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=15-6
\frac{5}{3} বাৰ 9 পুৰণ কৰক৷
x=9
15 লৈ -6 যোগ কৰক৷
x=9,y=9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-5y=-18,3x-2y=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 3\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 3\right)}\\-\frac{3}{3\left(-2\right)-\left(-5\times 3\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-18\\9\end{matrix}\right)
2\times 2 মেট্রিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ৰ বাবে, বিপৰীত মেট্ৰিক্স হৈছে \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), গতিকে মেট্ৰিক্স সমীকৰণক এটা মেট্ৰিক্স পূৰণৰ সমস্যাৰূপে পুনৰ লিখিব পাৰি৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}&\frac{5}{9}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-18\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}\left(-18\right)+\frac{5}{9}\times 9\\-\frac{1}{3}\left(-18\right)+\frac{1}{3}\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\9\end{matrix}\right)
গণনা কৰক৷
x=9,y=9
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-5y=-18,3x-2y=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x-3x-5y+2y=-18-9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x-5y=-18-ৰ পৰা 3x-2y=9 হৰণ কৰক৷
-5y+2y=-18-9
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-3y=-18-9
2y লৈ -5y যোগ কৰক৷
-3y=-27
-9 লৈ -18 যোগ কৰক৷
y=9
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-2\times 9=9
3x-2y=9-ত y-ৰ বাবে 9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x-18=9
-2 বাৰ 9 পুৰণ কৰক৷
3x=27
সমীকৰণৰ দুয়োটা দিশতে 18 যোগ কৰক৷
x=9
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=9,y=9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}