x, y-ৰ বাবে সমাধান কৰক
x=3
y=5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3x-5y=-16,2x+5y=31
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-5y=-16
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=5y-16
সমীকৰণৰ দুয়োটা দিশতে 5y যোগ কৰক৷
x=\frac{1}{3}\left(5y-16\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{3}y-\frac{16}{3}
\frac{1}{3} বাৰ 5y-16 পুৰণ কৰক৷
2\left(\frac{5}{3}y-\frac{16}{3}\right)+5y=31
অন্য সমীকৰণত x-ৰ বাবে \frac{5y-16}{3} স্থানাপন কৰক, 2x+5y=31৷
\frac{10}{3}y-\frac{32}{3}+5y=31
2 বাৰ \frac{5y-16}{3} পুৰণ কৰক৷
\frac{25}{3}y-\frac{32}{3}=31
5y লৈ \frac{10y}{3} যোগ কৰক৷
\frac{25}{3}y=\frac{125}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{32}{3} যোগ কৰক৷
y=5
\frac{25}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{5}{3}\times 5-\frac{16}{3}
x=\frac{5}{3}y-\frac{16}{3}-ত y-ৰ বাবে 5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{25-16}{3}
\frac{5}{3} বাৰ 5 পুৰণ কৰক৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{25}{3} লৈ -\frac{16}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-5y=-16,2x+5y=31
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\31\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-5\times 2\right)}&-\frac{-5}{3\times 5-\left(-5\times 2\right)}\\-\frac{2}{3\times 5-\left(-5\times 2\right)}&\frac{3}{3\times 5-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{2}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-16\right)+\frac{1}{5}\times 31\\-\frac{2}{25}\left(-16\right)+\frac{3}{25}\times 31\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
গণনা কৰক৷
x=3,y=5
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-5y=-16,2x+5y=31
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\times 5y=3\times 31
3x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
6x-10y=-32,6x+15y=93
সৰলীকৰণ৷
6x-6x-10y-15y=-32-93
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x-10y=-32-ৰ পৰা 6x+15y=93 হৰণ কৰক৷
-10y-15y=-32-93
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-25y=-32-93
-15y লৈ -10y যোগ কৰক৷
-25y=-125
-93 লৈ -32 যোগ কৰক৷
y=5
-25-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+5\times 5=31
2x+5y=31-ত y-ৰ বাবে 5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+25=31
5 বাৰ 5 পুৰণ কৰক৷
2x=6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 25 বিয়োগ কৰক৷
x=3
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}