মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x-4y=-6,2x+4y=16
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-4y=-6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=4y-6
সমীকৰণৰ দুয়োটা দিশতে 4y যোগ কৰক৷
x=\frac{1}{3}\left(4y-6\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{4}{3}y-2
\frac{1}{3} বাৰ 4y-6 পুৰণ কৰক৷
2\left(\frac{4}{3}y-2\right)+4y=16
অন্য সমীকৰণত x-ৰ বাবে \frac{4y}{3}-2 স্থানাপন কৰক, 2x+4y=16৷
\frac{8}{3}y-4+4y=16
2 বাৰ \frac{4y}{3}-2 পুৰণ কৰক৷
\frac{20}{3}y-4=16
4y লৈ \frac{8y}{3} যোগ কৰক৷
\frac{20}{3}y=20
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
y=3
\frac{20}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{4}{3}\times 3-2
x=\frac{4}{3}y-2-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=4-2
\frac{4}{3} বাৰ 3 পুৰণ কৰক৷
x=2
4 লৈ -2 যোগ কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-4y=-6,2x+4y=16
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\16\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-4\times 2\right)}&-\frac{-4}{3\times 4-\left(-4\times 2\right)}\\-\frac{2}{3\times 4-\left(-4\times 2\right)}&\frac{3}{3\times 4-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{1}{5}\times 16\\-\frac{1}{10}\left(-6\right)+\frac{3}{20}\times 16\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
গণনা কৰক৷
x=2,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-4y=-6,2x+4y=16
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 3x+2\left(-4\right)y=2\left(-6\right),3\times 2x+3\times 4y=3\times 16
3x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
6x-8y=-12,6x+12y=48
সৰলীকৰণ৷
6x-6x-8y-12y=-12-48
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x-8y=-12-ৰ পৰা 6x+12y=48 হৰণ কৰক৷
-8y-12y=-12-48
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-20y=-12-48
-12y লৈ -8y যোগ কৰক৷
-20y=-60
-48 লৈ -12 যোগ কৰক৷
y=3
-20-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+4\times 3=16
2x+4y=16-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+12=16
4 বাৰ 3 পুৰণ কৰক৷
2x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
x=2
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷