মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x+8y=15,2x-8y=10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x+8y=15
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=-8y+15
সমীকৰণৰ দুয়োটা দিশৰ পৰা 8y বিয়োগ কৰক৷
x=\frac{1}{3}\left(-8y+15\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{8}{3}y+5
\frac{1}{3} বাৰ -8y+15 পুৰণ কৰক৷
2\left(-\frac{8}{3}y+5\right)-8y=10
অন্য সমীকৰণত x-ৰ বাবে -\frac{8y}{3}+5 স্থানাপন কৰক, 2x-8y=10৷
-\frac{16}{3}y+10-8y=10
2 বাৰ -\frac{8y}{3}+5 পুৰণ কৰক৷
-\frac{40}{3}y+10=10
-8y লৈ -\frac{16y}{3} যোগ কৰক৷
-\frac{40}{3}y=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
y=0
-\frac{40}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=5
x=-\frac{8}{3}y+5-ত y-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=5,y=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+8y=15,2x-8y=10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}3&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
\left(\begin{matrix}3&8\\2&-8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&8\\2&-8\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-8\times 2}&-\frac{8}{3\left(-8\right)-8\times 2}\\-\frac{2}{3\left(-8\right)-8\times 2}&\frac{3}{3\left(-8\right)-8\times 2}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{1}{20}&-\frac{3}{40}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 15+\frac{1}{5}\times 10\\\frac{1}{20}\times 15-\frac{3}{40}\times 10\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
গণনা কৰক৷
x=5,y=0
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+8y=15,2x-8y=10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 3x+2\times 8y=2\times 15,3\times 2x+3\left(-8\right)y=3\times 10
3x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
6x+16y=30,6x-24y=30
সৰলীকৰণ৷
6x-6x+16y+24y=30-30
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x+16y=30-ৰ পৰা 6x-24y=30 হৰণ কৰক৷
16y+24y=30-30
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
40y=30-30
24y লৈ 16y যোগ কৰক৷
40y=0
-30 লৈ 30 যোগ কৰক৷
y=0
40-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x=10
2x-8y=10-ত y-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=5
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=5,y=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷