x, y-ৰ বাবে সমাধান কৰক
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
y = \frac{11}{10} = 1\frac{1}{10} = 1.1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3x+2y=7,4x+6y=13
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x+2y=7
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=-2y+7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=\frac{1}{3}\left(-2y+7\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{3}y+\frac{7}{3}
\frac{1}{3} বাৰ -2y+7 পুৰণ কৰক৷
4\left(-\frac{2}{3}y+\frac{7}{3}\right)+6y=13
অন্য সমীকৰণত x-ৰ বাবে \frac{-2y+7}{3} স্থানাপন কৰক, 4x+6y=13৷
-\frac{8}{3}y+\frac{28}{3}+6y=13
4 বাৰ \frac{-2y+7}{3} পুৰণ কৰক৷
\frac{10}{3}y+\frac{28}{3}=13
6y লৈ -\frac{8y}{3} যোগ কৰক৷
\frac{10}{3}y=\frac{11}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{28}{3} বিয়োগ কৰক৷
y=\frac{11}{10}
\frac{10}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{3}\times \frac{11}{10}+\frac{7}{3}
x=-\frac{2}{3}y+\frac{7}{3}-ত y-ৰ বাবে \frac{11}{10}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{11}{15}+\frac{7}{3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{2}{3} বাৰ \frac{11}{10} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{8}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{11}{15} লৈ \frac{7}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{8}{5},y=\frac{11}{10}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+2y=7,4x+6y=13
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
\left(\begin{matrix}3&2\\4&6\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-2\times 4}&-\frac{2}{3\times 6-2\times 4}\\-\frac{4}{3\times 6-2\times 4}&\frac{3}{3\times 6-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{2}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 7-\frac{1}{5}\times 13\\-\frac{2}{5}\times 7+\frac{3}{10}\times 13\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{11}{10}\end{matrix}\right)
গণনা কৰক৷
x=\frac{8}{5},y=\frac{11}{10}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+2y=7,4x+6y=13
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 3x+4\times 2y=4\times 7,3\times 4x+3\times 6y=3\times 13
3x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
12x+8y=28,12x+18y=39
সৰলীকৰণ৷
12x-12x+8y-18y=28-39
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 12x+8y=28-ৰ পৰা 12x+18y=39 হৰণ কৰক৷
8y-18y=28-39
-12x লৈ 12x যোগ কৰক৷ চৰ্তাৱলী 12x আৰু -12x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-10y=28-39
-18y লৈ 8y যোগ কৰক৷
-10y=-11
-39 লৈ 28 যোগ কৰক৷
y=\frac{11}{10}
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x+6\times \frac{11}{10}=13
4x+6y=13-ত y-ৰ বাবে \frac{11}{10}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x+\frac{33}{5}=13
6 বাৰ \frac{11}{10} পুৰণ কৰক৷
4x=\frac{32}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{33}{5} বিয়োগ কৰক৷
x=\frac{8}{5}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{8}{5},y=\frac{11}{10}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}