u, x-ৰ বাবে সমাধান কৰক
x=-\frac{1}{5}=-0.2
u=3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3u+5x=8,5u+5x=14
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3u+5x=8
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে u পৃথক কৰি uৰ বাবে ইয়াক সমাধান কৰক৷
3u=-5x+8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5x বিয়োগ কৰক৷
u=\frac{1}{3}\left(-5x+8\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
u=-\frac{5}{3}x+\frac{8}{3}
\frac{1}{3} বাৰ -5x+8 পুৰণ কৰক৷
5\left(-\frac{5}{3}x+\frac{8}{3}\right)+5x=14
অন্য সমীকৰণত u-ৰ বাবে \frac{-5x+8}{3} স্থানাপন কৰক, 5u+5x=14৷
-\frac{25}{3}x+\frac{40}{3}+5x=14
5 বাৰ \frac{-5x+8}{3} পুৰণ কৰক৷
-\frac{10}{3}x+\frac{40}{3}=14
5x লৈ -\frac{25x}{3} যোগ কৰক৷
-\frac{10}{3}x=\frac{2}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{40}{3} বিয়োগ কৰক৷
x=-\frac{1}{5}
-\frac{10}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
u=-\frac{5}{3}\left(-\frac{1}{5}\right)+\frac{8}{3}
u=-\frac{5}{3}x+\frac{8}{3}-ত x-ৰ বাবে -\frac{1}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি u-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
u=\frac{1+8}{3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{5}{3} বাৰ -\frac{1}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
u=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{3} লৈ \frac{8}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
u=3,x=-\frac{1}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3u+5x=8,5u+5x=14
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}3&5\\5&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-5\times 5}&-\frac{5}{3\times 5-5\times 5}\\-\frac{5}{3\times 5-5\times 5}&\frac{3}{3\times 5-5\times 5}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 8+\frac{1}{2}\times 14\\\frac{1}{2}\times 8-\frac{3}{10}\times 14\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{5}\end{matrix}\right)
গণনা কৰক৷
u=3,x=-\frac{1}{5}
মেট্ৰিক্স উপাদান u আৰু x নিষ্কাষিত কৰক৷
3u+5x=8,5u+5x=14
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3u-5u+5x-5x=8-14
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3u+5x=8-ৰ পৰা 5u+5x=14 হৰণ কৰক৷
3u-5u=8-14
-5x লৈ 5x যোগ কৰক৷ চৰ্তাৱলী 5x আৰু -5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-2u=8-14
-5u লৈ 3u যোগ কৰক৷
-2u=-6
-14 লৈ 8 যোগ কৰক৷
u=3
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5\times 3+5x=14
5u+5x=14-ত u-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
15+5x=14
5 বাৰ 3 পুৰণ কৰক৷
5x=-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 15 বিয়োগ কৰক৷
x=-\frac{1}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
u=3,x=-\frac{1}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}