মুখ্য সমললৈ এৰি যাওক
a, b-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3a+b=-3,2a-b=-1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3a+b=-3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে a পৃথক কৰি aৰ বাবে ইয়াক সমাধান কৰক৷
3a=-b-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা b বিয়োগ কৰক৷
a=\frac{1}{3}\left(-b-3\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-\frac{1}{3}b-1
\frac{1}{3} বাৰ -b-3 পুৰণ কৰক৷
2\left(-\frac{1}{3}b-1\right)-b=-1
অন্য সমীকৰণত a-ৰ বাবে -\frac{b}{3}-1 স্থানাপন কৰক, 2a-b=-1৷
-\frac{2}{3}b-2-b=-1
2 বাৰ -\frac{b}{3}-1 পুৰণ কৰক৷
-\frac{5}{3}b-2=-1
-b লৈ -\frac{2b}{3} যোগ কৰক৷
-\frac{5}{3}b=1
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
b=-\frac{3}{5}
-\frac{5}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
a=-\frac{1}{3}\left(-\frac{3}{5}\right)-1
a=-\frac{1}{3}b-1-ত b-ৰ বাবে -\frac{3}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
a=\frac{1}{5}-1
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{3} বাৰ -\frac{3}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
a=-\frac{4}{5}
\frac{1}{5} লৈ -1 যোগ কৰক৷
a=-\frac{4}{5},b=-\frac{3}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3a+b=-3,2a-b=-1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{1}{3\left(-1\right)-2}\\-\frac{2}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-3\right)+\frac{1}{5}\left(-1\right)\\\frac{2}{5}\left(-3\right)-\frac{3}{5}\left(-1\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\-\frac{3}{5}\end{matrix}\right)
গণনা কৰক৷
a=-\frac{4}{5},b=-\frac{3}{5}
মেট্ৰিক্স উপাদান a আৰু b নিষ্কাষিত কৰক৷
3a+b=-3,2a-b=-1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 3a+2b=2\left(-3\right),3\times 2a+3\left(-1\right)b=3\left(-1\right)
3a আৰু 2a সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
6a+2b=-6,6a-3b=-3
সৰলীকৰণ৷
6a-6a+2b+3b=-6+3
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6a+2b=-6-ৰ পৰা 6a-3b=-3 হৰণ কৰক৷
2b+3b=-6+3
-6a লৈ 6a যোগ কৰক৷ চৰ্তাৱলী 6a আৰু -6a সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5b=-6+3
3b লৈ 2b যোগ কৰক৷
5b=-3
3 লৈ -6 যোগ কৰক৷
b=-\frac{3}{5}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2a-\left(-\frac{3}{5}\right)=-1
2a-b=-1-ত b-ৰ বাবে -\frac{3}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2a=-\frac{8}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{5} বিয়োগ কৰক৷
a=-\frac{4}{5}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-\frac{4}{5},b=-\frac{3}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷