মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-2x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
2x+y=3,-2x+y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+y=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-y+3
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-y+3\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{2} বাৰ -y+3 পুৰণ কৰক৷
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)+y=1
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+3}{2} স্থানাপন কৰক, -2x+y=1৷
y-3+y=1
-2 বাৰ \frac{-y+3}{2} পুৰণ কৰক৷
2y-3=1
y লৈ y যোগ কৰক৷
2y=4
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
y=2
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}\times 2+\frac{3}{2}
x=-\frac{1}{2}y+\frac{3}{2}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-1+\frac{3}{2}
-\frac{1}{2} বাৰ 2 পুৰণ কৰক৷
x=\frac{1}{2}
-1 লৈ \frac{3}{2} যোগ কৰক৷
x=\frac{1}{2},y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-2x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
2x+y=3,-2x+y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}2&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
\left(\begin{matrix}2&1\\-2&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-2\right)}&-\frac{1}{2-\left(-2\right)}\\-\frac{-2}{2-\left(-2\right)}&\frac{2}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3-\frac{1}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\2\end{matrix}\right)
গণনা কৰক৷
x=\frac{1}{2},y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
y-2x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
2x+y=3,-2x+y=1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x+2x+y-y=3-1
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x+y=3-ৰ পৰা -2x+y=1 হৰণ কৰক৷
2x+2x=3-1
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
4x=3-1
2x লৈ 2x যোগ কৰক৷
4x=2
-1 লৈ 3 যোগ কৰক৷
x=\frac{1}{2}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-2\times \frac{1}{2}+y=1
-2x+y=1-ত x-ৰ বাবে \frac{1}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-1+y=1
-2 বাৰ \frac{1}{2} পুৰণ কৰক৷
y=2
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
x=\frac{1}{2},y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷