মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x+y=11,3x-y=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+y=11
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-y+11
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-y+11\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}y+\frac{11}{2}
\frac{1}{2} বাৰ -y+11 পুৰণ কৰক৷
3\left(-\frac{1}{2}y+\frac{11}{2}\right)-y=9
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+11}{2} স্থানাপন কৰক, 3x-y=9৷
-\frac{3}{2}y+\frac{33}{2}-y=9
3 বাৰ \frac{-y+11}{2} পুৰণ কৰক৷
-\frac{5}{2}y+\frac{33}{2}=9
-y লৈ -\frac{3y}{2} যোগ কৰক৷
-\frac{5}{2}y=-\frac{15}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{33}{2} বিয়োগ কৰক৷
y=3
-\frac{5}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{2}\times 3+\frac{11}{2}
x=-\frac{1}{2}y+\frac{11}{2}-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-3+11}{2}
-\frac{1}{2} বাৰ 3 পুৰণ কৰক৷
x=4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{3}{2} লৈ \frac{11}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+y=11,3x-y=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{1}{2\left(-1\right)-3}\\-\frac{3}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 11+\frac{1}{5}\times 9\\\frac{3}{5}\times 11-\frac{2}{5}\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
গণনা কৰক৷
x=4,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+y=11,3x-y=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 2x+3y=3\times 11,2\times 3x+2\left(-1\right)y=2\times 9
2x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
6x+3y=33,6x-2y=18
সৰলীকৰণ৷
6x-6x+3y+2y=33-18
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x+3y=33-ৰ পৰা 6x-2y=18 হৰণ কৰক৷
3y+2y=33-18
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5y=33-18
2y লৈ 3y যোগ কৰক৷
5y=15
-18 লৈ 33 যোগ কৰক৷
y=3
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-3=9
3x-y=9-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x=12
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
x=4
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷