x, y-ৰ বাবে সমাধান কৰক
x = -\frac{8}{5} = -1\frac{3}{5} = -1.6
y = \frac{18}{5} = 3\frac{3}{5} = 3.6
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x+7y=22,2x-3y=-14
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+7y=22
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-7y+22
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-7y+22\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{7}{2}y+11
\frac{1}{2} বাৰ -7y+22 পুৰণ কৰক৷
2\left(-\frac{7}{2}y+11\right)-3y=-14
অন্য সমীকৰণত x-ৰ বাবে -\frac{7y}{2}+11 স্থানাপন কৰক, 2x-3y=-14৷
-7y+22-3y=-14
2 বাৰ -\frac{7y}{2}+11 পুৰণ কৰক৷
-10y+22=-14
-3y লৈ -7y যোগ কৰক৷
-10y=-36
সমীকৰণৰ দুয়োটা দিশৰ পৰা 22 বিয়োগ কৰক৷
y=\frac{18}{5}
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{7}{2}\times \frac{18}{5}+11
x=-\frac{7}{2}y+11-ত y-ৰ বাবে \frac{18}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{63}{5}+11
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{7}{2} বাৰ \frac{18}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{8}{5}
-\frac{63}{5} লৈ 11 যোগ কৰক৷
x=-\frac{8}{5},y=\frac{18}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+7y=22,2x-3y=-14
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&7\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\-14\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}2&7\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
\left(\begin{matrix}2&7\\2&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\2&-3\end{matrix}\right))\left(\begin{matrix}22\\-14\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-7\times 2}&-\frac{7}{2\left(-3\right)-7\times 2}\\-\frac{2}{2\left(-3\right)-7\times 2}&\frac{2}{2\left(-3\right)-7\times 2}\end{matrix}\right)\left(\begin{matrix}22\\-14\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{7}{20}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}22\\-14\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}\times 22+\frac{7}{20}\left(-14\right)\\\frac{1}{10}\times 22-\frac{1}{10}\left(-14\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{5}\\\frac{18}{5}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{8}{5},y=\frac{18}{5}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+7y=22,2x-3y=-14
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x-2x+7y+3y=22+14
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x+7y=22-ৰ পৰা 2x-3y=-14 হৰণ কৰক৷
7y+3y=22+14
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
10y=22+14
3y লৈ 7y যোগ কৰক৷
10y=36
14 লৈ 22 যোগ কৰক৷
y=\frac{18}{5}
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x-3\times \frac{18}{5}=-14
2x-3y=-14-ত y-ৰ বাবে \frac{18}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-\frac{54}{5}=-14
-3 বাৰ \frac{18}{5} পুৰণ কৰক৷
2x=-\frac{16}{5}
সমীকৰণৰ দুয়োটা দিশতে \frac{54}{5} যোগ কৰক৷
x=-\frac{8}{5}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{8}{5},y=\frac{18}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}