x, y-ৰ বাবে সমাধান কৰক
x=\frac{5}{29}\approx 0.172413793
y = \frac{45}{29} = 1\frac{16}{29} \approx 1.551724138
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
7x-4y=-5
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
2x+3y=5,7x-4y=-5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+3y=5
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-3y+5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-3y+5\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{2}y+\frac{5}{2}
\frac{1}{2} বাৰ -3y+5 পুৰণ কৰক৷
7\left(-\frac{3}{2}y+\frac{5}{2}\right)-4y=-5
অন্য সমীকৰণত x-ৰ বাবে \frac{-3y+5}{2} স্থানাপন কৰক, 7x-4y=-5৷
-\frac{21}{2}y+\frac{35}{2}-4y=-5
7 বাৰ \frac{-3y+5}{2} পুৰণ কৰক৷
-\frac{29}{2}y+\frac{35}{2}=-5
-4y লৈ -\frac{21y}{2} যোগ কৰক৷
-\frac{29}{2}y=-\frac{45}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{35}{2} বিয়োগ কৰক৷
y=\frac{45}{29}
-\frac{29}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{2}\times \frac{45}{29}+\frac{5}{2}
x=-\frac{3}{2}y+\frac{5}{2}-ত y-ৰ বাবে \frac{45}{29}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{135}{58}+\frac{5}{2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{2} বাৰ \frac{45}{29} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{5}{29}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{135}{58} লৈ \frac{5}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{5}{29},y=\frac{45}{29}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
7x-4y=-5
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
2x+3y=5,7x-4y=-5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-5\end{matrix}\right)
\left(\begin{matrix}2&3\\7&-4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&-4\end{matrix}\right))\left(\begin{matrix}5\\-5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-3\times 7}&-\frac{3}{2\left(-4\right)-3\times 7}\\-\frac{7}{2\left(-4\right)-3\times 7}&\frac{2}{2\left(-4\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}5\\-5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}&\frac{3}{29}\\\frac{7}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}5\\-5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}\times 5+\frac{3}{29}\left(-5\right)\\\frac{7}{29}\times 5-\frac{2}{29}\left(-5\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{29}\\\frac{45}{29}\end{matrix}\right)
গণনা কৰক৷
x=\frac{5}{29},y=\frac{45}{29}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
7x-4y=-5
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
2x+3y=5,7x-4y=-5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7\times 2x+7\times 3y=7\times 5,2\times 7x+2\left(-4\right)y=2\left(-5\right)
2x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
14x+21y=35,14x-8y=-10
সৰলীকৰণ৷
14x-14x+21y+8y=35+10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 14x+21y=35-ৰ পৰা 14x-8y=-10 হৰণ কৰক৷
21y+8y=35+10
-14x লৈ 14x যোগ কৰক৷ চৰ্তাৱলী 14x আৰু -14x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
29y=35+10
8y লৈ 21y যোগ কৰক৷
29y=45
10 লৈ 35 যোগ কৰক৷
y=\frac{45}{29}
29-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
7x-4\times \frac{45}{29}=-5
7x-4y=-5-ত y-ৰ বাবে \frac{45}{29}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x-\frac{180}{29}=-5
-4 বাৰ \frac{45}{29} পুৰণ কৰক৷
7x=\frac{35}{29}
সমীকৰণৰ দুয়োটা দিশতে \frac{180}{29} যোগ কৰক৷
x=\frac{5}{29}
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{29},y=\frac{45}{29}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}