মুখ্য সমললৈ এৰি যাওক
m, n-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2m-3n=-1,m+n=3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2m-3n=-1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে m পৃথক কৰি mৰ বাবে ইয়াক সমাধান কৰক৷
2m=3n-1
সমীকৰণৰ দুয়োটা দিশতে 3n যোগ কৰক৷
m=\frac{1}{2}\left(3n-1\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m=\frac{3}{2}n-\frac{1}{2}
\frac{1}{2} বাৰ 3n-1 পুৰণ কৰক৷
\frac{3}{2}n-\frac{1}{2}+n=3
অন্য সমীকৰণত m-ৰ বাবে \frac{3n-1}{2} স্থানাপন কৰক, m+n=3৷
\frac{5}{2}n-\frac{1}{2}=3
n লৈ \frac{3n}{2} যোগ কৰক৷
\frac{5}{2}n=\frac{7}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷
n=\frac{7}{5}
\frac{5}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
m=\frac{3}{2}\times \frac{7}{5}-\frac{1}{2}
m=\frac{3}{2}n-\frac{1}{2}-ত n-ৰ বাবে \frac{7}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
m=\frac{21}{10}-\frac{1}{2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3}{2} বাৰ \frac{7}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
m=\frac{8}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{21}{10} লৈ -\frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
m=\frac{8}{5},n=\frac{7}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2m-3n=-1,m+n=3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 3\\-\frac{1}{5}\left(-1\right)+\frac{2}{5}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{7}{5}\end{matrix}\right)
গণনা কৰক৷
m=\frac{8}{5},n=\frac{7}{5}
মেট্ৰিক্স উপাদান m আৰু n নিষ্কাষিত কৰক৷
2m-3n=-1,m+n=3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2m-3n=-1,2m+2n=2\times 3
2m আৰু m সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
2m-3n=-1,2m+2n=6
সৰলীকৰণ৷
2m-2m-3n-2n=-1-6
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2m-3n=-1-ৰ পৰা 2m+2n=6 হৰণ কৰক৷
-3n-2n=-1-6
-2m লৈ 2m যোগ কৰক৷ চৰ্তাৱলী 2m আৰু -2m সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-5n=-1-6
-2n লৈ -3n যোগ কৰক৷
-5n=-7
-6 লৈ -1 যোগ কৰক৷
n=\frac{7}{5}
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m+\frac{7}{5}=3
m+n=3-ত n-ৰ বাবে \frac{7}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
m=\frac{8}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{7}{5} বিয়োগ কৰক৷
m=\frac{8}{5},n=\frac{7}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷