x, y-ৰ বাবে সমাধান কৰক
x=\frac{1}{120}\approx 0.008333333
y=\frac{1}{200}=0.005
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
1200x+1600y=18
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
600x+2400y=17
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
1200x+1600y=18,600x+2400y=17
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
1200x+1600y=18
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
1200x=-1600y+18
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1600y বিয়োগ কৰক৷
x=\frac{1}{1200}\left(-1600y+18\right)
1200-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{4}{3}y+\frac{3}{200}
\frac{1}{1200} বাৰ -1600y+18 পুৰণ কৰক৷
600\left(-\frac{4}{3}y+\frac{3}{200}\right)+2400y=17
অন্য সমীকৰণত x-ৰ বাবে -\frac{4y}{3}+\frac{3}{200} স্থানাপন কৰক, 600x+2400y=17৷
-800y+9+2400y=17
600 বাৰ -\frac{4y}{3}+\frac{3}{200} পুৰণ কৰক৷
1600y+9=17
2400y লৈ -800y যোগ কৰক৷
1600y=8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
y=\frac{1}{200}
1600-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{4}{3}\times \frac{1}{200}+\frac{3}{200}
x=-\frac{4}{3}y+\frac{3}{200}-ত y-ৰ বাবে \frac{1}{200}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{1}{150}+\frac{3}{200}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{4}{3} বাৰ \frac{1}{200} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{1}{120}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{1}{150} লৈ \frac{3}{200} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{1}{120},y=\frac{1}{200}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
1200x+1600y=18
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
600x+2400y=17
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
1200x+1600y=18,600x+2400y=17
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\17\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2400}{1200\times 2400-1600\times 600}&-\frac{1600}{1200\times 2400-1600\times 600}\\-\frac{600}{1200\times 2400-1600\times 600}&\frac{1200}{1200\times 2400-1600\times 600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}&-\frac{1}{1200}\\-\frac{1}{3200}&\frac{1}{1600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}\times 18-\frac{1}{1200}\times 17\\-\frac{1}{3200}\times 18+\frac{1}{1600}\times 17\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{120}\\\frac{1}{200}\end{matrix}\right)
গণনা কৰক৷
x=\frac{1}{120},y=\frac{1}{200}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
1200x+1600y=18
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
600x+2400y=17
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
1200x+1600y=18,600x+2400y=17
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
600\times 1200x+600\times 1600y=600\times 18,1200\times 600x+1200\times 2400y=1200\times 17
1200x আৰু 600x সমান কৰিবৰ বাবে, 600-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1200-ৰ দ্বাৰা পুৰণ কৰক৷
720000x+960000y=10800,720000x+2880000y=20400
সৰলীকৰণ৷
720000x-720000x+960000y-2880000y=10800-20400
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 720000x+960000y=10800-ৰ পৰা 720000x+2880000y=20400 হৰণ কৰক৷
960000y-2880000y=10800-20400
-720000x লৈ 720000x যোগ কৰক৷ চৰ্তাৱলী 720000x আৰু -720000x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-1920000y=10800-20400
-2880000y লৈ 960000y যোগ কৰক৷
-1920000y=-9600
-20400 লৈ 10800 যোগ কৰক৷
y=\frac{1}{200}
-1920000-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
600x+2400\times \frac{1}{200}=17
600x+2400y=17-ত y-ৰ বাবে \frac{1}{200}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
600x+12=17
2400 বাৰ \frac{1}{200} পুৰণ কৰক৷
600x=5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
x=\frac{1}{120}
600-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{1}{120},y=\frac{1}{200}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}