x, y-ৰ বাবে সমাধান কৰক
x=0
y=-8
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
12x-5y=40,12x-11y=88
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
12x-5y=40
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
12x=5y+40
সমীকৰণৰ দুয়োটা দিশতে 5y যোগ কৰক৷
x=\frac{1}{12}\left(5y+40\right)
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{12}y+\frac{10}{3}
\frac{1}{12} বাৰ 40+5y পুৰণ কৰক৷
12\left(\frac{5}{12}y+\frac{10}{3}\right)-11y=88
অন্য সমীকৰণত x-ৰ বাবে \frac{10}{3}+\frac{5y}{12} স্থানাপন কৰক, 12x-11y=88৷
5y+40-11y=88
12 বাৰ \frac{10}{3}+\frac{5y}{12} পুৰণ কৰক৷
-6y+40=88
-11y লৈ 5y যোগ কৰক৷
-6y=48
সমীকৰণৰ দুয়োটা দিশৰ পৰা 40 বিয়োগ কৰক৷
y=-8
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{12}\left(-8\right)+\frac{10}{3}
x=\frac{5}{12}y+\frac{10}{3}-ত y-ৰ বাবে -8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-10+10}{3}
\frac{5}{12} বাৰ -8 পুৰণ কৰক৷
x=0
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{10}{3} লৈ \frac{10}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=0,y=-8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
12x-5y=40,12x-11y=88
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\88\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&-5\\12&-11\end{matrix}\right))\left(\begin{matrix}40\\88\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{12\left(-11\right)-\left(-5\times 12\right)}&-\frac{-5}{12\left(-11\right)-\left(-5\times 12\right)}\\-\frac{12}{12\left(-11\right)-\left(-5\times 12\right)}&\frac{12}{12\left(-11\right)-\left(-5\times 12\right)}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{72}&-\frac{5}{72}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}40\\88\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{72}\times 40-\frac{5}{72}\times 88\\\frac{1}{6}\times 40-\frac{1}{6}\times 88\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-8\end{matrix}\right)
গণনা কৰক৷
x=0,y=-8
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
12x-5y=40,12x-11y=88
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
12x-12x-5y+11y=40-88
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 12x-5y=40-ৰ পৰা 12x-11y=88 হৰণ কৰক৷
-5y+11y=40-88
-12x লৈ 12x যোগ কৰক৷ চৰ্তাৱলী 12x আৰু -12x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
6y=40-88
11y লৈ -5y যোগ কৰক৷
6y=-48
-88 লৈ 40 যোগ কৰক৷
y=-8
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
12x-11\left(-8\right)=88
12x-11y=88-ত y-ৰ বাবে -8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
12x+88=88
-11 বাৰ -8 পুৰণ কৰক৷
12x=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 88 বিয়োগ কৰক৷
x=0
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=0,y=-8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}