a, b-ৰ বাবে সমাধান কৰক
a=-1
b=2
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
12a+4b=-4,3a-9b=-21
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
12a+4b=-4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে a পৃথক কৰি aৰ বাবে ইয়াক সমাধান কৰক৷
12a=-4b-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4b বিয়োগ কৰক৷
a=\frac{1}{12}\left(-4b-4\right)
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-\frac{1}{3}b-\frac{1}{3}
\frac{1}{12} বাৰ -4b-4 পুৰণ কৰক৷
3\left(-\frac{1}{3}b-\frac{1}{3}\right)-9b=-21
অন্য সমীকৰণত a-ৰ বাবে \frac{-b-1}{3} স্থানাপন কৰক, 3a-9b=-21৷
-b-1-9b=-21
3 বাৰ \frac{-b-1}{3} পুৰণ কৰক৷
-10b-1=-21
-9b লৈ -b যোগ কৰক৷
-10b=-20
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
b=2
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-\frac{1}{3}\times 2-\frac{1}{3}
a=-\frac{1}{3}b-\frac{1}{3}-ত b-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
a=\frac{-2-1}{3}
-\frac{1}{3} বাৰ 2 পুৰণ কৰক৷
a=-1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{2}{3} লৈ -\frac{1}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
a=-1,b=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
12a+4b=-4,3a-9b=-21
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}12&4\\3&-9\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\-21\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}12&4\\3&-9\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
\left(\begin{matrix}12&4\\3&-9\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{12\left(-9\right)-4\times 3}&-\frac{4}{12\left(-9\right)-4\times 3}\\-\frac{3}{12\left(-9\right)-4\times 3}&\frac{12}{12\left(-9\right)-4\times 3}\end{matrix}\right)\left(\begin{matrix}-4\\-21\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}&\frac{1}{30}\\\frac{1}{40}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-4\\-21\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}\left(-4\right)+\frac{1}{30}\left(-21\right)\\\frac{1}{40}\left(-4\right)-\frac{1}{10}\left(-21\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
গণনা কৰক৷
a=-1,b=2
মেট্ৰিক্স উপাদান a আৰু b নিষ্কাষিত কৰক৷
12a+4b=-4,3a-9b=-21
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 12a+3\times 4b=3\left(-4\right),12\times 3a+12\left(-9\right)b=12\left(-21\right)
12a আৰু 3a সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 12-ৰ দ্বাৰা পুৰণ কৰক৷
36a+12b=-12,36a-108b=-252
সৰলীকৰণ৷
36a-36a+12b+108b=-12+252
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 36a+12b=-12-ৰ পৰা 36a-108b=-252 হৰণ কৰক৷
12b+108b=-12+252
-36a লৈ 36a যোগ কৰক৷ চৰ্তাৱলী 36a আৰু -36a সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
120b=-12+252
108b লৈ 12b যোগ কৰক৷
120b=240
252 লৈ -12 যোগ কৰক৷
b=2
120-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3a-9\times 2=-21
3a-9b=-21-ত b-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3a-18=-21
-9 বাৰ 2 পুৰণ কৰক৷
3a=-3
সমীকৰণৰ দুয়োটা দিশতে 18 যোগ কৰক৷
a=-1
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-1,b=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}