মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

10x+4y=-12,-9x-5y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
10x+4y=-12
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
10x=-4y-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
x=\frac{1}{10}\left(-4y-12\right)
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{5}y-\frac{6}{5}
\frac{1}{10} বাৰ -4y-12 পুৰণ কৰক৷
-9\left(-\frac{2}{5}y-\frac{6}{5}\right)-5y=1
অন্য সমীকৰণত x-ৰ বাবে \frac{-2y-6}{5} স্থানাপন কৰক, -9x-5y=1৷
\frac{18}{5}y+\frac{54}{5}-5y=1
-9 বাৰ \frac{-2y-6}{5} পুৰণ কৰক৷
-\frac{7}{5}y+\frac{54}{5}=1
-5y লৈ \frac{18y}{5} যোগ কৰক৷
-\frac{7}{5}y=-\frac{49}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{54}{5} বিয়োগ কৰক৷
y=7
-\frac{7}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{5}\times 7-\frac{6}{5}
x=-\frac{2}{5}y-\frac{6}{5}-ত y-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-14-6}{5}
-\frac{2}{5} বাৰ 7 পুৰণ কৰক৷
x=-4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{14}{5} লৈ -\frac{6}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-4,y=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
10x+4y=-12,-9x-5y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{10\left(-5\right)-4\left(-9\right)}&-\frac{4}{10\left(-5\right)-4\left(-9\right)}\\-\frac{-9}{10\left(-5\right)-4\left(-9\right)}&\frac{10}{10\left(-5\right)-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{2}{7}\\-\frac{9}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{2}{7}\\-\frac{9}{14}\left(-12\right)-\frac{5}{7}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
গণনা কৰক৷
x=-4,y=7
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
10x+4y=-12,-9x-5y=1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-9\times 10x-9\times 4y=-9\left(-12\right),10\left(-9\right)x+10\left(-5\right)y=10
10x আৰু -9x সমান কৰিবৰ বাবে, -9-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 10-ৰ দ্বাৰা পুৰণ কৰক৷
-90x-36y=108,-90x-50y=10
সৰলীকৰণ৷
-90x+90x-36y+50y=108-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -90x-36y=108-ৰ পৰা -90x-50y=10 হৰণ কৰক৷
-36y+50y=108-10
90x লৈ -90x যোগ কৰক৷ চৰ্তাৱলী -90x আৰু 90x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
14y=108-10
50y লৈ -36y যোগ কৰক৷
14y=98
-10 লৈ 108 যোগ কৰক৷
y=7
14-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-9x-5\times 7=1
-9x-5y=1-ত y-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-9x-35=1
-5 বাৰ 7 পুৰণ কৰক৷
-9x=36
সমীকৰণৰ দুয়োটা দিশতে 35 যোগ কৰক৷
x=-4
-9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4,y=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷