মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x-6y=-16,5x-y=18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-x-6y=-16
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-x=6y-16
সমীকৰণৰ দুয়োটা দিশতে 6y যোগ কৰক৷
x=-\left(6y-16\right)
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-6y+16
-1 বাৰ 6y-16 পুৰণ কৰক৷
5\left(-6y+16\right)-y=18
অন্য সমীকৰণত x-ৰ বাবে -6y+16 স্থানাপন কৰক, 5x-y=18৷
-30y+80-y=18
5 বাৰ -6y+16 পুৰণ কৰক৷
-31y+80=18
-y লৈ -30y যোগ কৰক৷
-31y=-62
সমীকৰণৰ দুয়োটা দিশৰ পৰা 80 বিয়োগ কৰক৷
y=2
-31-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-6\times 2+16
x=-6y+16-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-12+16
-6 বাৰ 2 পুৰণ কৰক৷
x=4
-12 লৈ 16 যোগ কৰক৷
x=4,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-x-6y=-16,5x-y=18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{-6}{-\left(-1\right)-\left(-6\times 5\right)}\\-\frac{5}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}&\frac{6}{31}\\-\frac{5}{31}&-\frac{1}{31}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}\left(-16\right)+\frac{6}{31}\times 18\\-\frac{5}{31}\left(-16\right)-\frac{1}{31}\times 18\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
গণনা কৰক৷
x=4,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-x-6y=-16,5x-y=18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\left(-1\right)x+5\left(-6\right)y=5\left(-16\right),-5x-\left(-y\right)=-18
-x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -1-ৰ দ্বাৰা পুৰণ কৰক৷
-5x-30y=-80,-5x+y=-18
সৰলীকৰণ৷
-5x+5x-30y-y=-80+18
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -5x-30y=-80-ৰ পৰা -5x+y=-18 হৰণ কৰক৷
-30y-y=-80+18
5x লৈ -5x যোগ কৰক৷ চৰ্তাৱলী -5x আৰু 5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-31y=-80+18
-y লৈ -30y যোগ কৰক৷
-31y=-62
18 লৈ -80 যোগ কৰক৷
y=2
-31-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-2=18
5x-y=18-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x=20
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=4
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=4,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷