মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x+y=-6,3x-2y=10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-x+y=-6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-x=-y-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=-\left(-y-6\right)
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=y+6
-1 বাৰ -y-6 পুৰণ কৰক৷
3\left(y+6\right)-2y=10
অন্য সমীকৰণত x-ৰ বাবে y+6 স্থানাপন কৰক, 3x-2y=10৷
3y+18-2y=10
3 বাৰ y+6 পুৰণ কৰক৷
y+18=10
-2y লৈ 3y যোগ কৰক৷
y=-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 18 বিয়োগ কৰক৷
x=-8+6
x=y+6-ত y-ৰ বাবে -8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-2
-8 লৈ 6 যোগ কৰক৷
x=-2,y=-8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-x+y=-6,3x-2y=10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\\-\frac{3}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-6\right)+10\\3\left(-6\right)+10\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-8\end{matrix}\right)
গণনা কৰক৷
x=-2,y=-8
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-x+y=-6,3x-2y=10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\left(-1\right)x+3y=3\left(-6\right),-3x-\left(-2y\right)=-10
-x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -1-ৰ দ্বাৰা পুৰণ কৰক৷
-3x+3y=-18,-3x+2y=-10
সৰলীকৰণ৷
-3x+3x+3y-2y=-18+10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -3x+3y=-18-ৰ পৰা -3x+2y=-10 হৰণ কৰক৷
3y-2y=-18+10
3x লৈ -3x যোগ কৰক৷ চৰ্তাৱলী -3x আৰু 3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
y=-18+10
-2y লৈ 3y যোগ কৰক৷
y=-8
10 লৈ -18 যোগ কৰক৷
3x-2\left(-8\right)=10
3x-2y=10-ত y-ৰ বাবে -8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+16=10
-2 বাৰ -8 পুৰণ কৰক৷
3x=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 16 বিয়োগ কৰক৷
x=-2
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2,y=-8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷