মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x+6y=20,-x+3y=8
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-x+6y=20
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-x=-6y+20
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6y বিয়োগ কৰক৷
x=-\left(-6y+20\right)
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=6y-20
-1 বাৰ -6y+20 পুৰণ কৰক৷
-\left(6y-20\right)+3y=8
অন্য সমীকৰণত x-ৰ বাবে 6y-20 স্থানাপন কৰক, -x+3y=8৷
-6y+20+3y=8
-1 বাৰ 6y-20 পুৰণ কৰক৷
-3y+20=8
3y লৈ -6y যোগ কৰক৷
-3y=-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 20 বিয়োগ কৰক৷
y=4
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=6\times 4-20
x=6y-20-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=24-20
6 বাৰ 4 পুৰণ কৰক৷
x=4
24 লৈ -20 যোগ কৰক৷
x=4,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-x+6y=20,-x+3y=8
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&6\\-1&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3-6\left(-1\right)}&-\frac{6}{-3-6\left(-1\right)}\\-\frac{-1}{-3-6\left(-1\right)}&-\frac{1}{-3-6\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20-2\times 8\\\frac{1}{3}\times 20-\frac{1}{3}\times 8\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
গণনা কৰক৷
x=4,y=4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-x+6y=20,-x+3y=8
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-x+x+6y-3y=20-8
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -x+6y=20-ৰ পৰা -x+3y=8 হৰণ কৰক৷
6y-3y=20-8
x লৈ -x যোগ কৰক৷ চৰ্তাৱলী -x আৰু x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
3y=20-8
-3y লৈ 6y যোগ কৰক৷
3y=12
-8 লৈ 20 যোগ কৰক৷
y=4
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-x+3\times 4=8
-x+3y=8-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-x+12=8
3 বাৰ 4 পুৰণ কৰক৷
-x=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
x=4
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=4,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷