মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-9x-y=-14,-x-5y=18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-9x-y=-14
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-9x=y-14
সমীকৰণৰ দুয়োটা দিশতে y যোগ কৰক৷
x=-\frac{1}{9}\left(y-14\right)
-9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{9}y+\frac{14}{9}
-\frac{1}{9} বাৰ y-14 পুৰণ কৰক৷
-\left(-\frac{1}{9}y+\frac{14}{9}\right)-5y=18
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+14}{9} স্থানাপন কৰক, -x-5y=18৷
\frac{1}{9}y-\frac{14}{9}-5y=18
-1 বাৰ \frac{-y+14}{9} পুৰণ কৰক৷
-\frac{44}{9}y-\frac{14}{9}=18
-5y লৈ \frac{y}{9} যোগ কৰক৷
-\frac{44}{9}y=\frac{176}{9}
সমীকৰণৰ দুয়োটা দিশতে \frac{14}{9} যোগ কৰক৷
y=-4
-\frac{44}{9}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{9}\left(-4\right)+\frac{14}{9}
x=-\frac{1}{9}y+\frac{14}{9}-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{4+14}{9}
-\frac{1}{9} বাৰ -4 পুৰণ কৰক৷
x=2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{4}{9} লৈ \frac{14}{9} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=2,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-9x-y=-14,-x-5y=18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\\-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{9}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}&\frac{1}{44}\\\frac{1}{44}&-\frac{9}{44}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}\left(-14\right)+\frac{1}{44}\times 18\\\frac{1}{44}\left(-14\right)-\frac{9}{44}\times 18\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
গণনা কৰক৷
x=2,y=-4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-9x-y=-14,-x-5y=18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-\left(-9\right)x-\left(-y\right)=-\left(-14\right),-9\left(-1\right)x-9\left(-5\right)y=-9\times 18
-9x আৰু -x সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -9-ৰ দ্বাৰা পুৰণ কৰক৷
9x+y=14,9x+45y=-162
সৰলীকৰণ৷
9x-9x+y-45y=14+162
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 9x+y=14-ৰ পৰা 9x+45y=-162 হৰণ কৰক৷
y-45y=14+162
-9x লৈ 9x যোগ কৰক৷ চৰ্তাৱলী 9x আৰু -9x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-44y=14+162
-45y লৈ y যোগ কৰক৷
-44y=176
162 লৈ 14 যোগ কৰক৷
y=-4
-44-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-x-5\left(-4\right)=18
-x-5y=18-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-x+20=18
-5 বাৰ -4 পুৰণ কৰক৷
-x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 20 বিয়োগ কৰক৷
x=2
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷