মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-9x-7y=17,10x+7y=-15
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-9x-7y=17
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-9x=7y+17
সমীকৰণৰ দুয়োটা দিশতে 7y যোগ কৰক৷
x=-\frac{1}{9}\left(7y+17\right)
-9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{7}{9}y-\frac{17}{9}
-\frac{1}{9} বাৰ 7y+17 পুৰণ কৰক৷
10\left(-\frac{7}{9}y-\frac{17}{9}\right)+7y=-15
অন্য সমীকৰণত x-ৰ বাবে \frac{-7y-17}{9} স্থানাপন কৰক, 10x+7y=-15৷
-\frac{70}{9}y-\frac{170}{9}+7y=-15
10 বাৰ \frac{-7y-17}{9} পুৰণ কৰক৷
-\frac{7}{9}y-\frac{170}{9}=-15
7y লৈ -\frac{70y}{9} যোগ কৰক৷
-\frac{7}{9}y=\frac{35}{9}
সমীকৰণৰ দুয়োটা দিশতে \frac{170}{9} যোগ কৰক৷
y=-5
-\frac{7}{9}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{7}{9}\left(-5\right)-\frac{17}{9}
x=-\frac{7}{9}y-\frac{17}{9}-ত y-ৰ বাবে -5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{35-17}{9}
-\frac{7}{9} বাৰ -5 পুৰণ কৰক৷
x=2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{35}{9} লৈ -\frac{17}{9} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=2,y=-5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-9x-7y=17,10x+7y=-15
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-15\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right))\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right))\left(\begin{matrix}17\\-15\end{matrix}\right)
\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right))\left(\begin{matrix}17\\-15\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-7\\10&7\end{matrix}\right))\left(\begin{matrix}17\\-15\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-9\times 7-\left(-7\times 10\right)}&-\frac{-7}{-9\times 7-\left(-7\times 10\right)}\\-\frac{10}{-9\times 7-\left(-7\times 10\right)}&-\frac{9}{-9\times 7-\left(-7\times 10\right)}\end{matrix}\right)\left(\begin{matrix}17\\-15\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-\frac{10}{7}&-\frac{9}{7}\end{matrix}\right)\left(\begin{matrix}17\\-15\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17-15\\-\frac{10}{7}\times 17-\frac{9}{7}\left(-15\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
গণনা কৰক৷
x=2,y=-5
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-9x-7y=17,10x+7y=-15
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
10\left(-9\right)x+10\left(-7\right)y=10\times 17,-9\times 10x-9\times 7y=-9\left(-15\right)
-9x আৰু 10x সমান কৰিবৰ বাবে, 10-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -9-ৰ দ্বাৰা পুৰণ কৰক৷
-90x-70y=170,-90x-63y=135
সৰলীকৰণ৷
-90x+90x-70y+63y=170-135
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -90x-70y=170-ৰ পৰা -90x-63y=135 হৰণ কৰক৷
-70y+63y=170-135
90x লৈ -90x যোগ কৰক৷ চৰ্তাৱলী -90x আৰু 90x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-7y=170-135
63y লৈ -70y যোগ কৰক৷
-7y=35
-135 লৈ 170 যোগ কৰক৷
y=-5
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
10x+7\left(-5\right)=-15
10x+7y=-15-ত y-ৰ বাবে -5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
10x-35=-15
7 বাৰ -5 পুৰণ কৰক৷
10x=20
সমীকৰণৰ দুয়োটা দিশতে 35 যোগ কৰক৷
x=2
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2,y=-5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷