x, y-ৰ বাবে সমাধান কৰক
x=1
y=3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-8x+7y=13,7x-9y=-20
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-8x+7y=13
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-8x=-7y+13
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7y বিয়োগ কৰক৷
x=-\frac{1}{8}\left(-7y+13\right)
-8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{7}{8}y-\frac{13}{8}
-\frac{1}{8} বাৰ -7y+13 পুৰণ কৰক৷
7\left(\frac{7}{8}y-\frac{13}{8}\right)-9y=-20
অন্য সমীকৰণত x-ৰ বাবে \frac{7y-13}{8} স্থানাপন কৰক, 7x-9y=-20৷
\frac{49}{8}y-\frac{91}{8}-9y=-20
7 বাৰ \frac{7y-13}{8} পুৰণ কৰক৷
-\frac{23}{8}y-\frac{91}{8}=-20
-9y লৈ \frac{49y}{8} যোগ কৰক৷
-\frac{23}{8}y=-\frac{69}{8}
সমীকৰণৰ দুয়োটা দিশতে \frac{91}{8} যোগ কৰক৷
y=3
-\frac{23}{8}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{7}{8}\times 3-\frac{13}{8}
x=\frac{7}{8}y-\frac{13}{8}-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{21-13}{8}
\frac{7}{8} বাৰ 3 পুৰণ কৰক৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{21}{8} লৈ -\frac{13}{8} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-8x+7y=13,7x-9y=-20
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-20\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-8\left(-9\right)-7\times 7}&-\frac{7}{-8\left(-9\right)-7\times 7}\\-\frac{7}{-8\left(-9\right)-7\times 7}&-\frac{8}{-8\left(-9\right)-7\times 7}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}&-\frac{7}{23}\\-\frac{7}{23}&-\frac{8}{23}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}\times 13-\frac{7}{23}\left(-20\right)\\-\frac{7}{23}\times 13-\frac{8}{23}\left(-20\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
গণনা কৰক৷
x=1,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-8x+7y=13,7x-9y=-20
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7\left(-8\right)x+7\times 7y=7\times 13,-8\times 7x-8\left(-9\right)y=-8\left(-20\right)
-8x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -8-ৰ দ্বাৰা পুৰণ কৰক৷
-56x+49y=91,-56x+72y=160
সৰলীকৰণ৷
-56x+56x+49y-72y=91-160
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -56x+49y=91-ৰ পৰা -56x+72y=160 হৰণ কৰক৷
49y-72y=91-160
56x লৈ -56x যোগ কৰক৷ চৰ্তাৱলী -56x আৰু 56x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-23y=91-160
-72y লৈ 49y যোগ কৰক৷
-23y=-69
-160 লৈ 91 যোগ কৰক৷
y=3
-23-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
7x-9\times 3=-20
7x-9y=-20-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x-27=-20
-9 বাৰ 3 পুৰণ কৰক৷
7x=7
সমীকৰণৰ দুয়োটা দিশতে 27 যোগ কৰক৷
x=1
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}