মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-7x-8y=-2,-5x+8y=26
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-7x-8y=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-7x=8y-2
সমীকৰণৰ দুয়োটা দিশতে 8y যোগ কৰক৷
x=-\frac{1}{7}\left(8y-2\right)
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{8}{7}y+\frac{2}{7}
-\frac{1}{7} বাৰ 8y-2 পুৰণ কৰক৷
-5\left(-\frac{8}{7}y+\frac{2}{7}\right)+8y=26
অন্য সমীকৰণত x-ৰ বাবে \frac{-8y+2}{7} স্থানাপন কৰক, -5x+8y=26৷
\frac{40}{7}y-\frac{10}{7}+8y=26
-5 বাৰ \frac{-8y+2}{7} পুৰণ কৰক৷
\frac{96}{7}y-\frac{10}{7}=26
8y লৈ \frac{40y}{7} যোগ কৰক৷
\frac{96}{7}y=\frac{192}{7}
সমীকৰণৰ দুয়োটা দিশতে \frac{10}{7} যোগ কৰক৷
y=2
\frac{96}{7}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{8}{7}\times 2+\frac{2}{7}
x=-\frac{8}{7}y+\frac{2}{7}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-16+2}{7}
-\frac{8}{7} বাৰ 2 পুৰণ কৰক৷
x=-2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{16}{7} লৈ \frac{2}{7} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-2,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-7x-8y=-2,-5x+8y=26
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\26\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{-8}{-7\times 8-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{7}{-7\times 8-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\-\frac{5}{96}&\frac{7}{96}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-2\right)-\frac{1}{12}\times 26\\-\frac{5}{96}\left(-2\right)+\frac{7}{96}\times 26\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
গণনা কৰক৷
x=-2,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-7x-8y=-2,-5x+8y=26
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-5\left(-7\right)x-5\left(-8\right)y=-5\left(-2\right),-7\left(-5\right)x-7\times 8y=-7\times 26
-7x আৰু -5x সমান কৰিবৰ বাবে, -5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -7-ৰ দ্বাৰা পুৰণ কৰক৷
35x+40y=10,35x-56y=-182
সৰলীকৰণ৷
35x-35x+40y+56y=10+182
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 35x+40y=10-ৰ পৰা 35x-56y=-182 হৰণ কৰক৷
40y+56y=10+182
-35x লৈ 35x যোগ কৰক৷ চৰ্তাৱলী 35x আৰু -35x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
96y=10+182
56y লৈ 40y যোগ কৰক৷
96y=192
182 লৈ 10 যোগ কৰক৷
y=2
96-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-5x+8\times 2=26
-5x+8y=26-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-5x+16=26
8 বাৰ 2 পুৰণ কৰক৷
-5x=10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 16 বিয়োগ কৰক৷
x=-2
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷