মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-7x+2y=-124,5x-y=18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-7x+2y=-124
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-7x=-2y-124
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=-\frac{1}{7}\left(-2y-124\right)
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{7}y+\frac{124}{7}
-\frac{1}{7} বাৰ -2y-124 পুৰণ কৰক৷
5\left(\frac{2}{7}y+\frac{124}{7}\right)-y=18
অন্য সমীকৰণত x-ৰ বাবে \frac{124+2y}{7} স্থানাপন কৰক, 5x-y=18৷
\frac{10}{7}y+\frac{620}{7}-y=18
5 বাৰ \frac{124+2y}{7} পুৰণ কৰক৷
\frac{3}{7}y+\frac{620}{7}=18
-y লৈ \frac{10y}{7} যোগ কৰক৷
\frac{3}{7}y=-\frac{494}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{620}{7} বিয়োগ কৰক৷
y=-\frac{494}{3}
\frac{3}{7}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{7}\left(-\frac{494}{3}\right)+\frac{124}{7}
x=\frac{2}{7}y+\frac{124}{7}-ত y-ৰ বাবে -\frac{494}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{988}{21}+\frac{124}{7}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{2}{7} বাৰ -\frac{494}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{88}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{988}{21} লৈ \frac{124}{7} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-\frac{88}{3},y=-\frac{494}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-7x+2y=-124,5x-y=18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-124\\18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-124\\18\end{matrix}\right)
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-124\\18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-124\\18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-7\left(-1\right)-2\times 5}&-\frac{2}{-7\left(-1\right)-2\times 5}\\-\frac{5}{-7\left(-1\right)-2\times 5}&-\frac{7}{-7\left(-1\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}-124\\18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{5}{3}&\frac{7}{3}\end{matrix}\right)\left(\begin{matrix}-124\\18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-124\right)+\frac{2}{3}\times 18\\\frac{5}{3}\left(-124\right)+\frac{7}{3}\times 18\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{88}{3}\\-\frac{494}{3}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{88}{3},y=-\frac{494}{3}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-7x+2y=-124,5x-y=18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\left(-7\right)x+5\times 2y=5\left(-124\right),-7\times 5x-7\left(-1\right)y=-7\times 18
-7x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -7-ৰ দ্বাৰা পুৰণ কৰক৷
-35x+10y=-620,-35x+7y=-126
সৰলীকৰণ৷
-35x+35x+10y-7y=-620+126
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -35x+10y=-620-ৰ পৰা -35x+7y=-126 হৰণ কৰক৷
10y-7y=-620+126
35x লৈ -35x যোগ কৰক৷ চৰ্তাৱলী -35x আৰু 35x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
3y=-620+126
-7y লৈ 10y যোগ কৰক৷
3y=-494
126 লৈ -620 যোগ কৰক৷
y=-\frac{494}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-\left(-\frac{494}{3}\right)=18
5x-y=18-ত y-ৰ বাবে -\frac{494}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x=-\frac{440}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{494}{3} বিয়োগ কৰক৷
x=-\frac{88}{3}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{88}{3},y=-\frac{494}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷