মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-3x+3y=-9,6x-y=-12
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-3x+3y=-9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-3x=-3y-9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=-\frac{1}{3}\left(-3y-9\right)
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=y+3
-\frac{1}{3} বাৰ -3y-9 পুৰণ কৰক৷
6\left(y+3\right)-y=-12
অন্য সমীকৰণত x-ৰ বাবে y+3 স্থানাপন কৰক, 6x-y=-12৷
6y+18-y=-12
6 বাৰ y+3 পুৰণ কৰক৷
5y+18=-12
-y লৈ 6y যোগ কৰক৷
5y=-30
সমীকৰণৰ দুয়োটা দিশৰ পৰা 18 বিয়োগ কৰক৷
y=-6
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-6+3
x=y+3-ত y-ৰ বাবে -6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-3
-6 লৈ 3 যোগ কৰক৷
x=-3,y=-6
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-3x+3y=-9,6x-y=-12
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\6&-1\end{matrix}\right))\left(\begin{matrix}-9\\-12\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\\-\frac{6}{-3\left(-1\right)-3\times 6}&-\frac{3}{-3\left(-1\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{1}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-9\\-12\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\left(-9\right)+\frac{1}{5}\left(-12\right)\\\frac{2}{5}\left(-9\right)+\frac{1}{5}\left(-12\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
গণনা কৰক৷
x=-3,y=-6
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-3x+3y=-9,6x-y=-12
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
6\left(-3\right)x+6\times 3y=6\left(-9\right),-3\times 6x-3\left(-1\right)y=-3\left(-12\right)
-3x আৰু 6x সমান কৰিবৰ বাবে, 6-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -3-ৰ দ্বাৰা পুৰণ কৰক৷
-18x+18y=-54,-18x+3y=36
সৰলীকৰণ৷
-18x+18x+18y-3y=-54-36
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -18x+18y=-54-ৰ পৰা -18x+3y=36 হৰণ কৰক৷
18y-3y=-54-36
18x লৈ -18x যোগ কৰক৷ চৰ্তাৱলী -18x আৰু 18x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
15y=-54-36
-3y লৈ 18y যোগ কৰক৷
15y=-90
-36 লৈ -54 যোগ কৰক৷
y=-6
15-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
6x-\left(-6\right)=-12
6x-y=-12-ত y-ৰ বাবে -6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
6x=-18
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=-3
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3,y=-6
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷