মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে y যোগ কৰক।
-3x+2y=4,x+y=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-3x+2y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-3x=-2y+4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=-\frac{1}{3}\left(-2y+4\right)
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{3}y-\frac{4}{3}
-\frac{1}{3} বাৰ -2y+4 পুৰণ কৰক৷
\frac{2}{3}y-\frac{4}{3}+y=2
অন্য সমীকৰণত x-ৰ বাবে \frac{-4+2y}{3} স্থানাপন কৰক, x+y=2৷
\frac{5}{3}y-\frac{4}{3}=2
y লৈ \frac{2y}{3} যোগ কৰক৷
\frac{5}{3}y=\frac{10}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{4}{3} যোগ কৰক৷
y=2
\frac{5}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{3}\times 2-\frac{4}{3}
x=\frac{2}{3}y-\frac{4}{3}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{4-4}{3}
\frac{2}{3} বাৰ 2 পুৰণ কৰক৷
x=0
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{4}{3} লৈ -\frac{4}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=0,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে y যোগ কৰক।
-3x+2y=4,x+y=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&-\frac{3}{-3-2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 4+\frac{2}{5}\times 2\\\frac{1}{5}\times 4+\frac{3}{5}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
গণনা কৰক৷
x=0,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে y যোগ কৰক।
-3x+2y=4,x+y=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-3x+2y=4,-3x-3y=-3\times 2
-3x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -3-ৰ দ্বাৰা পুৰণ কৰক৷
-3x+2y=4,-3x-3y=-6
সৰলীকৰণ৷
-3x+3x+2y+3y=4+6
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -3x+2y=4-ৰ পৰা -3x-3y=-6 হৰণ কৰক৷
2y+3y=4+6
3x লৈ -3x যোগ কৰক৷ চৰ্তাৱলী -3x আৰু 3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5y=4+6
3y লৈ 2y যোগ কৰক৷
5y=10
6 লৈ 4 যোগ কৰক৷
y=2
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x+2=2
x+y=2-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x=0,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷