মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-2x-6y=-26,5x+2y=13
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-2x-6y=-26
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-2x=6y-26
সমীকৰণৰ দুয়োটা দিশতে 6y যোগ কৰক৷
x=-\frac{1}{2}\left(6y-26\right)
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3y+13
-\frac{1}{2} বাৰ 6y-26 পুৰণ কৰক৷
5\left(-3y+13\right)+2y=13
অন্য সমীকৰণত x-ৰ বাবে -3y+13 স্থানাপন কৰক, 5x+2y=13৷
-15y+65+2y=13
5 বাৰ -3y+13 পুৰণ কৰক৷
-13y+65=13
2y লৈ -15y যোগ কৰক৷
-13y=-52
সমীকৰণৰ দুয়োটা দিশৰ পৰা 65 বিয়োগ কৰক৷
y=4
-13-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3\times 4+13
x=-3y+13-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-12+13
-3 বাৰ 4 পুৰণ কৰক৷
x=1
-12 লৈ 13 যোগ কৰক৷
x=1,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-2x-6y=-26,5x+2y=13
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\13\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2\times 2-\left(-6\times 5\right)}&-\frac{-6}{-2\times 2-\left(-6\times 5\right)}\\-\frac{5}{-2\times 2-\left(-6\times 5\right)}&-\frac{2}{-2\times 2-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\-\frac{5}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-26\right)+\frac{3}{13}\times 13\\-\frac{5}{26}\left(-26\right)-\frac{1}{13}\times 13\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
গণনা কৰক৷
x=1,y=4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-2x-6y=-26,5x+2y=13
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\left(-2\right)x+5\left(-6\right)y=5\left(-26\right),-2\times 5x-2\times 2y=-2\times 13
-2x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -2-ৰ দ্বাৰা পুৰণ কৰক৷
-10x-30y=-130,-10x-4y=-26
সৰলীকৰণ৷
-10x+10x-30y+4y=-130+26
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -10x-30y=-130-ৰ পৰা -10x-4y=-26 হৰণ কৰক৷
-30y+4y=-130+26
10x লৈ -10x যোগ কৰক৷ চৰ্তাৱলী -10x আৰু 10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-26y=-130+26
4y লৈ -30y যোগ কৰক৷
-26y=-104
26 লৈ -130 যোগ কৰক৷
y=4
-26-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x+2\times 4=13
5x+2y=13-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+8=13
2 বাৰ 4 পুৰণ কৰক৷
5x=5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 8 বিয়োগ কৰক৷
x=1
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷