মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x^{2}-13x+12=\left(x-3\right)\times 2x
3x-4ৰ দ্বাৰা x-3 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
3x^{2}-13x+12=\left(2x-6\right)x
x-3ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12=2x^{2}-6x
2x-6ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12-2x^{2}=-6x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-13x+12=-6x
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-13x+12+6x=0
উভয় কাষে 6x যোগ কৰক।
x^{2}-7x+12=0
-7x লাভ কৰিবলৈ -13x আৰু 6x একত্ৰ কৰক৷
a+b=-7 ab=12
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-7x+12ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-12 -2,-6 -3,-4
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 12 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-12=-13 -2-6=-8 -3-4=-7
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=-3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -7।
\left(x-4\right)\left(x-3\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=4 x=3
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x-3=0 সমাধান কৰক।
3x^{2}-13x+12=\left(x-3\right)\times 2x
3x-4ৰ দ্বাৰা x-3 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
3x^{2}-13x+12=\left(2x-6\right)x
x-3ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12=2x^{2}-6x
2x-6ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12-2x^{2}=-6x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-13x+12=-6x
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-13x+12+6x=0
উভয় কাষে 6x যোগ কৰক।
x^{2}-7x+12=0
-7x লাভ কৰিবলৈ -13x আৰু 6x একত্ৰ কৰক৷
a+b=-7 ab=1\times 12=12
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+12 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-12 -2,-6 -3,-4
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 12 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-12=-13 -2-6=-8 -3-4=-7
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=-3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -7।
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12ক \left(x^{2}-4x\right)+\left(-3x+12\right) হিচাপে পুনৰ লিখক।
x\left(x-4\right)-3\left(x-4\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -3ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(x-3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=3
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x-3=0 সমাধান কৰক।
3x^{2}-13x+12=\left(x-3\right)\times 2x
3x-4ৰ দ্বাৰা x-3 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
3x^{2}-13x+12=\left(2x-6\right)x
x-3ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12=2x^{2}-6x
2x-6ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12-2x^{2}=-6x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-13x+12=-6x
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-13x+12+6x=0
উভয় কাষে 6x যোগ কৰক।
x^{2}-7x+12=0
-7x লাভ কৰিবলৈ -13x আৰু 6x একত্ৰ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -7, c-ৰ বাবে 12 চাবষ্টিটিউট৷
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
বৰ্গ -7৷
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 বাৰ 12 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
-48 লৈ 49 যোগ কৰক৷
x=\frac{-\left(-7\right)±1}{2}
1-ৰ বৰ্গমূল লওক৷
x=\frac{7±1}{2}
-7ৰ বিপৰীত হৈছে 7৷
x=\frac{8}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{7±1}{2} সমাধান কৰক৷ 1 লৈ 7 যোগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{7±1}{2} সমাধান কৰক৷ 7-ৰ পৰা 1 বিয়োগ কৰক৷
x=3
2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x=4 x=3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
3x^{2}-13x+12=\left(x-3\right)\times 2x
3x-4ৰ দ্বাৰা x-3 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
3x^{2}-13x+12=\left(2x-6\right)x
x-3ক 2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12=2x^{2}-6x
2x-6ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x^{2}-13x+12-2x^{2}=-6x
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-13x+12=-6x
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-13x+12+6x=0
উভয় কাষে 6x যোগ কৰক।
x^{2}-7x+12=0
-7x লাভ কৰিবলৈ -13x আৰু 6x একত্ৰ কৰক৷
x^{2}-7x=-12
দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
-7 হৰণ কৰক, -\frac{7}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{2} বৰ্গ কৰক৷
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
\frac{49}{4} লৈ -12 যোগ কৰক৷
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
উৎপাদক x^{2}-7x+\frac{49}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
সৰলীকৰণ৷
x=4 x=3
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{2} যোগ কৰক৷