x, y-ৰ বাবে সমাধান কৰক
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x-y=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
5x-2y=4,x-y=-2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-2y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=2y+4
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{5}\left(2y+4\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{5}y+\frac{4}{5}
\frac{1}{5} বাৰ 4+2y পুৰণ কৰক৷
\frac{2}{5}y+\frac{4}{5}-y=-2
অন্য সমীকৰণত x-ৰ বাবে \frac{4+2y}{5} স্থানাপন কৰক, x-y=-2৷
-\frac{3}{5}y+\frac{4}{5}=-2
-y লৈ \frac{2y}{5} যোগ কৰক৷
-\frac{3}{5}y=-\frac{14}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{4}{5} বিয়োগ কৰক৷
y=\frac{14}{3}
-\frac{3}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{5}\times \frac{14}{3}+\frac{4}{5}
x=\frac{2}{5}y+\frac{4}{5}-ত y-ৰ বাবে \frac{14}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{28}{15}+\frac{4}{5}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{2}{5} বাৰ \frac{14}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{8}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{28}{15} লৈ \frac{4}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{8}{3},y=\frac{14}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-y=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
5x-2y=4,x-y=-2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-2}{5\left(-1\right)-\left(-2\right)}\\-\frac{1}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4-\frac{2}{3}\left(-2\right)\\\frac{1}{3}\times 4-\frac{5}{3}\left(-2\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\\frac{14}{3}\end{matrix}\right)
গণনা কৰক৷
x=\frac{8}{3},y=\frac{14}{3}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-y=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
5x-2y=4,x-y=-2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5x-2y=4,5x+5\left(-1\right)y=5\left(-2\right)
5x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
5x-2y=4,5x-5y=-10
সৰলীকৰণ৷
5x-5x-2y+5y=4+10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 5x-2y=4-ৰ পৰা 5x-5y=-10 হৰণ কৰক৷
-2y+5y=4+10
-5x লৈ 5x যোগ কৰক৷ চৰ্তাৱলী 5x আৰু -5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
3y=4+10
5y লৈ -2y যোগ কৰক৷
3y=14
10 লৈ 4 যোগ কৰক৷
y=\frac{14}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x-\frac{14}{3}=-2
x-y=-2-ত y-ৰ বাবে \frac{14}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{8}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{14}{3} যোগ কৰক৷
x=\frac{8}{3},y=\frac{14}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}