মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-2x=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
-x+y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ -1 লাভ কৰিবলৈ -2ৰ দ্বাৰা 2 হৰণ কৰক৷
y-2x=-3,y-x=-3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-2x=-3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=2x-3
সমীকৰণৰ দুয়োটা দিশতে 2x যোগ কৰক৷
2x-3-x=-3
অন্য সমীকৰণত y-ৰ বাবে 2x-3 স্থানাপন কৰক, y-x=-3৷
x-3=-3
-x লৈ 2x যোগ কৰক৷
x=0
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
y=-3
y=2x-3-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-3,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-2x=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
-x+y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ -1 লাভ কৰিবলৈ -2ৰ দ্বাৰা 2 হৰণ কৰক৷
y-2x=-3,y-x=-3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-2}{-1-\left(-2\right)}\\-\frac{1}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)+2\left(-3\right)\\-\left(-3\right)-3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
গণনা কৰক৷
y=-3,x=0
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-2x=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
-x+y=-3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ -1 লাভ কৰিবলৈ -2ৰ দ্বাৰা 2 হৰণ কৰক৷
y-2x=-3,y-x=-3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-2x+x=-3+3
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-2x=-3-ৰ পৰা y-x=-3 হৰণ কৰক৷
-2x+x=-3+3
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-x=-3+3
x লৈ -2x যোগ কৰক৷
-x=0
3 লৈ -3 যোগ কৰক৷
x=0
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-3
y-x=-3-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-3,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷