x, y-ৰ বাবে সমাধান কৰক
x=8801.1
y=101
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x=8.89\times 990
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 990-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=8801.1
8801.1 লাভ কৰিবৰ বাবে 8.89 আৰু 990 পুৰণ কৰক৷
\frac{8801.1}{990-y}=9.9
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
8801.1=9.9\left(-y+990\right)
চলক y, 990ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ -y+990-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
8801.1=-9.9y+9801
9.9ক -y+990ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
-9.9y+9801=8801.1
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
-9.9y=8801.1-9801
দুয়োটা দিশৰ পৰা 9801 বিয়োগ কৰক৷
-9.9y=-999.9
-999.9 লাভ কৰিবলৈ 8801.1-ৰ পৰা 9801 বিয়োগ কৰক৷
y=\frac{-999.9}{-9.9}
-9.9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{-9999}{-99}
10ৰ দ্বাৰা লব আৰু হৰ দুয়োটাৰে পূৰণ কৰি \frac{-999.9}{-9.9} বঢ়াওক৷
y=101
101 লাভ কৰিবলৈ -99ৰ দ্বাৰা -9999 হৰণ কৰক৷
x=8801.1 y=101
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}