মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
\frac{1}{8}x-y=-\frac{5}{2}
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
\frac{1}{8}x=y-\frac{5}{2}
সমীকৰণৰ দুয়োটা দিশতে y যোগ কৰক৷
x=8\left(y-\frac{5}{2}\right)
8-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=8y-20
8 বাৰ y-\frac{5}{2} পুৰণ কৰক৷
3\left(8y-20\right)+\frac{1}{3}y=13
অন্য সমীকৰণত x-ৰ বাবে 8y-20 স্থানাপন কৰক, 3x+\frac{1}{3}y=13৷
24y-60+\frac{1}{3}y=13
3 বাৰ 8y-20 পুৰণ কৰক৷
\frac{73}{3}y-60=13
\frac{y}{3} লৈ 24y যোগ কৰক৷
\frac{73}{3}y=73
সমীকৰণৰ দুয়োটা দিশতে 60 যোগ কৰক৷
y=3
\frac{73}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=8\times 3-20
x=8y-20-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=24-20
8 বাৰ 3 পুৰণ কৰক৷
x=4
24 লৈ -20 যোগ কৰক৷
x=4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&-\frac{-1}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\\-\frac{3}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&\frac{\frac{1}{8}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&\frac{24}{73}\\-\frac{72}{73}&\frac{3}{73}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-\frac{5}{2}\right)+\frac{24}{73}\times 13\\-\frac{72}{73}\left(-\frac{5}{2}\right)+\frac{3}{73}\times 13\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
গণনা কৰক৷
x=4,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times \frac{1}{8}x+3\left(-1\right)y=3\left(-\frac{5}{2}\right),\frac{1}{8}\times 3x+\frac{1}{8}\times \frac{1}{3}y=\frac{1}{8}\times 13
\frac{x}{8} আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ \frac{1}{8}-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{3}{8}x-3y=-\frac{15}{2},\frac{3}{8}x+\frac{1}{24}y=\frac{13}{8}
সৰলীকৰণ৷
\frac{3}{8}x-\frac{3}{8}x-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{3}{8}x-3y=-\frac{15}{2}-ৰ পৰা \frac{3}{8}x+\frac{1}{24}y=\frac{13}{8} হৰণ কৰক৷
-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
-\frac{3x}{8} লৈ \frac{3x}{8} যোগ কৰক৷ চৰ্তাৱলী \frac{3x}{8} আৰু -\frac{3x}{8} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{73}{24}y=-\frac{15}{2}-\frac{13}{8}
-\frac{y}{24} লৈ -3y যোগ কৰক৷
-\frac{73}{24}y=-\frac{73}{8}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{13}{8} লৈ -\frac{15}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
y=3
-\frac{73}{24}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
3x+\frac{1}{3}\times 3=13
3x+\frac{1}{3}y=13-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+1=13
\frac{1}{3} বাৰ 3 পুৰণ কৰক৷
3x=12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=4
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷