মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x-3y=24
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 8ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,8 ৰ সাধাৰণ বিভাজক৷
10x-3y=72
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
2x-3y=24,10x-3y=72
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x-3y=24
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=3y+24
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{2}\left(3y+24\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{2}y+12
\frac{1}{2} বাৰ 24+3y পুৰণ কৰক৷
10\left(\frac{3}{2}y+12\right)-3y=72
অন্য সমীকৰণত x-ৰ বাবে \frac{3y}{2}+12 স্থানাপন কৰক, 10x-3y=72৷
15y+120-3y=72
10 বাৰ \frac{3y}{2}+12 পুৰণ কৰক৷
12y+120=72
-3y লৈ 15y যোগ কৰক৷
12y=-48
সমীকৰণৰ দুয়োটা দিশৰ পৰা 120 বিয়োগ কৰক৷
y=-4
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{2}\left(-4\right)+12
x=\frac{3}{2}y+12-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-6+12
\frac{3}{2} বাৰ -4 পুৰণ কৰক৷
x=6
-6 লৈ 12 যোগ কৰক৷
x=6,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x-3y=24
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 8ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,8 ৰ সাধাৰণ বিভাজক৷
10x-3y=72
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
2x-3y=24,10x-3y=72
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\72\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\10&-3\end{matrix}\right))\left(\begin{matrix}24\\72\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-3\times 10\right)}&-\frac{-3}{2\left(-3\right)-\left(-3\times 10\right)}\\-\frac{10}{2\left(-3\right)-\left(-3\times 10\right)}&\frac{2}{2\left(-3\right)-\left(-3\times 10\right)}\end{matrix}\right)\left(\begin{matrix}24\\72\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{1}{8}\\-\frac{5}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}24\\72\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 24+\frac{1}{8}\times 72\\-\frac{5}{12}\times 24+\frac{1}{12}\times 72\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
গণনা কৰক৷
x=6,y=-4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x-3y=24
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 8ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,8 ৰ সাধাৰণ বিভাজক৷
10x-3y=72
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
2x-3y=24,10x-3y=72
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x-10x-3y+3y=24-72
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x-3y=24-ৰ পৰা 10x-3y=72 হৰণ কৰক৷
2x-10x=24-72
3y লৈ -3y যোগ কৰক৷ চৰ্তাৱলী -3y আৰু 3y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-8x=24-72
-10x লৈ 2x যোগ কৰক৷
-8x=-48
-72 লৈ 24 যোগ কৰক৷
x=6
-8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
10\times 6-3y=72
10x-3y=72-ত x-ৰ বাবে 6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
60-3y=72
10 বাৰ 6 পুৰণ কৰক৷
-3y=12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 60 বিয়োগ কৰক৷
y=-4
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=6,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷