x, y-ৰ বাবে সমাধান কৰক
x=-4
y=3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
\frac{1}{4}x+\frac{1}{3}y=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
\frac{1}{4}x=-\frac{1}{3}y
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{y}{3} বিয়োগ কৰক৷
x=4\left(-\frac{1}{3}\right)y
4-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=-\frac{4}{3}y
4 বাৰ -\frac{y}{3} পুৰণ কৰক৷
\frac{1}{2}\left(-\frac{4}{3}\right)y+\frac{1}{6}y=-\frac{3}{2}
অন্য সমীকৰণত x-ৰ বাবে -\frac{4y}{3} স্থানাপন কৰক, \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}৷
-\frac{2}{3}y+\frac{1}{6}y=-\frac{3}{2}
\frac{1}{2} বাৰ -\frac{4y}{3} পুৰণ কৰক৷
-\frac{1}{2}y=-\frac{3}{2}
\frac{y}{6} লৈ -\frac{2y}{3} যোগ কৰক৷
y=3
-2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=-\frac{4}{3}\times 3
x=-\frac{4}{3}y-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-4
-\frac{4}{3} বাৰ 3 পুৰণ কৰক৷
x=-4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{8}{3}\\4&-2\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\left(-\frac{3}{2}\right)\\-2\left(-\frac{3}{2}\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
গণনা কৰক৷
x=-4,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\times \frac{1}{3}y=0,\frac{1}{4}\times \frac{1}{2}x+\frac{1}{4}\times \frac{1}{6}y=\frac{1}{4}\left(-\frac{3}{2}\right)
\frac{x}{4} আৰু \frac{x}{2} সমান কৰিবৰ বাবে, \frac{1}{2}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ \frac{1}{4}-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{1}{8}x+\frac{1}{6}y=0,\frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8}
সৰলীকৰণ৷
\frac{1}{8}x-\frac{1}{8}x+\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{1}{8}x+\frac{1}{6}y=0-ৰ পৰা \frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8} হৰণ কৰক৷
\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
-\frac{x}{8} লৈ \frac{x}{8} যোগ কৰক৷ চৰ্তাৱলী \frac{x}{8} আৰু -\frac{x}{8} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
\frac{1}{8}y=\frac{3}{8}
-\frac{y}{24} লৈ \frac{y}{6} যোগ কৰক৷
y=3
8-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
\frac{1}{2}x+\frac{1}{6}\times 3=-\frac{3}{2}
\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
\frac{1}{2}x+\frac{1}{2}=-\frac{3}{2}
\frac{1}{6} বাৰ 3 পুৰণ কৰক৷
\frac{1}{2}x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷
x=-4
2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=-4,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}