মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+2y=28
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 4ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,2 ৰ সাধাৰণ বিভাজক৷
4x-3y=24
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 12ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,4 ৰ সাধাৰণ বিভাজক৷
x+2y=28,4x-3y=24
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+2y=28
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-2y+28
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
4\left(-2y+28\right)-3y=24
অন্য সমীকৰণত x-ৰ বাবে -2y+28 স্থানাপন কৰক, 4x-3y=24৷
-8y+112-3y=24
4 বাৰ -2y+28 পুৰণ কৰক৷
-11y+112=24
-3y লৈ -8y যোগ কৰক৷
-11y=-88
সমীকৰণৰ দুয়োটা দিশৰ পৰা 112 বিয়োগ কৰক৷
y=8
-11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2\times 8+28
x=-2y+28-ত y-ৰ বাবে 8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-16+28
-2 বাৰ 8 পুৰণ কৰক৷
x=12
-16 লৈ 28 যোগ কৰক৷
x=12,y=8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+2y=28
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 4ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,2 ৰ সাধাৰণ বিভাজক৷
4x-3y=24
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 12ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,4 ৰ সাধাৰণ বিভাজক৷
x+2y=28,4x-3y=24
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 4}&-\frac{2}{-3-2\times 4}\\-\frac{4}{-3-2\times 4}&\frac{1}{-3-2\times 4}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 28+\frac{2}{11}\times 24\\\frac{4}{11}\times 28-\frac{1}{11}\times 24\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
গণনা কৰক৷
x=12,y=8
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+2y=28
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 4ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 4,2 ৰ সাধাৰণ বিভাজক৷
4x-3y=24
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 12ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,4 ৰ সাধাৰণ বিভাজক৷
x+2y=28,4x-3y=24
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4x+4\times 2y=4\times 28,4x-3y=24
x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
4x+8y=112,4x-3y=24
সৰলীকৰণ৷
4x-4x+8y+3y=112-24
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 4x+8y=112-ৰ পৰা 4x-3y=24 হৰণ কৰক৷
8y+3y=112-24
-4x লৈ 4x যোগ কৰক৷ চৰ্তাৱলী 4x আৰু -4x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
11y=112-24
3y লৈ 8y যোগ কৰক৷
11y=88
-24 লৈ 112 যোগ কৰক৷
y=8
11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x-3\times 8=24
4x-3y=24-ত y-ৰ বাবে 8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x-24=24
-3 বাৰ 8 পুৰণ কৰক৷
4x=48
সমীকৰণৰ দুয়োটা দিশতে 24 যোগ কৰক৷
x=12
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=12,y=8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷