x, y-ৰ বাবে সমাধান কৰক
x=15
y=-6
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x-3y=48
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
3x+5y=15
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
2x-3y=48,3x+5y=15
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x-3y=48
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=3y+48
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{2}\left(3y+48\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{2}y+24
\frac{1}{2} বাৰ 48+3y পুৰণ কৰক৷
3\left(\frac{3}{2}y+24\right)+5y=15
অন্য সমীকৰণত x-ৰ বাবে \frac{3y}{2}+24 স্থানাপন কৰক, 3x+5y=15৷
\frac{9}{2}y+72+5y=15
3 বাৰ \frac{3y}{2}+24 পুৰণ কৰক৷
\frac{19}{2}y+72=15
5y লৈ \frac{9y}{2} যোগ কৰক৷
\frac{19}{2}y=-57
সমীকৰণৰ দুয়োটা দিশৰ পৰা 72 বিয়োগ কৰক৷
y=-6
\frac{19}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{3}{2}\left(-6\right)+24
x=\frac{3}{2}y+24-ত y-ৰ বাবে -6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-9+24
\frac{3}{2} বাৰ -6 পুৰণ কৰক৷
x=15
-9 লৈ 24 যোগ কৰক৷
x=15,y=-6
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x-3y=48
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
3x+5y=15
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
2x-3y=48,3x+5y=15
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\15\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 48+\frac{3}{19}\times 15\\-\frac{3}{19}\times 48+\frac{2}{19}\times 15\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-6\end{matrix}\right)
গণনা কৰক৷
x=15,y=-6
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x-3y=48
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 6ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 3,2 ৰ সাধাৰণ বিভাজক৷
3x+5y=15
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ 15ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও 5,3 ৰ সাধাৰণ বিভাজক৷
2x-3y=48,3x+5y=15
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 2x+3\left(-3\right)y=3\times 48,2\times 3x+2\times 5y=2\times 15
2x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
6x-9y=144,6x+10y=30
সৰলীকৰণ৷
6x-6x-9y-10y=144-30
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x-9y=144-ৰ পৰা 6x+10y=30 হৰণ কৰক৷
-9y-10y=144-30
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-19y=144-30
-10y লৈ -9y যোগ কৰক৷
-19y=114
-30 লৈ 144 যোগ কৰক৷
y=-6
-19-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x+5\left(-6\right)=15
3x+5y=15-ত y-ৰ বাবে -6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x-30=15
5 বাৰ -6 পুৰণ কৰক৷
3x=45
সমীকৰণৰ দুয়োটা দিশতে 30 যোগ কৰক৷
x=15
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=15,y=-6
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}