x, y-ৰ বাবে সমাধান কৰক
x=3
y=4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3\left(x+1\right)=2\left(y+2\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ চলক y, -2ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y+2,3 ৰ সাধাৰণ বিভাজক৷
3x+3=2\left(y+2\right)
3ক x+1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3=2y+4
2ক y+2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3-2y=4
দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
3x-2y=4-3
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
3x-2y=1
1 লাভ কৰিবলৈ 4-ৰ পৰা 3 বিয়োগ কৰক৷
3\left(x-2\right)=y-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলক y, 1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y-1,3 ৰ সাধাৰণ বিভাজক৷
3x-6=y-1
3ক x-2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x-6-y=-1
দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
3x-y=-1+6
উভয় কাষে 6 যোগ কৰক।
3x-y=5
5 লাভ কৰিবৰ বাবে -1 আৰু 6 যোগ কৰক৷
3x-2y=1,3x-y=5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-2y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=2y+1
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{3}\left(2y+1\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{3}y+\frac{1}{3}
\frac{1}{3} বাৰ 2y+1 পুৰণ কৰক৷
3\left(\frac{2}{3}y+\frac{1}{3}\right)-y=5
অন্য সমীকৰণত x-ৰ বাবে \frac{2y+1}{3} স্থানাপন কৰক, 3x-y=5৷
2y+1-y=5
3 বাৰ \frac{2y+1}{3} পুৰণ কৰক৷
y+1=5
-y লৈ 2y যোগ কৰক৷
y=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=\frac{2}{3}\times 4+\frac{1}{3}
x=\frac{2}{3}y+\frac{1}{3}-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{8+1}{3}
\frac{2}{3} বাৰ 4 পুৰণ কৰক৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{8}{3} লৈ \frac{1}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3\left(x+1\right)=2\left(y+2\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ চলক y, -2ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y+2,3 ৰ সাধাৰণ বিভাজক৷
3x+3=2\left(y+2\right)
3ক x+1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3=2y+4
2ক y+2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3-2y=4
দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
3x-2y=4-3
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
3x-2y=1
1 লাভ কৰিবলৈ 4-ৰ পৰা 3 বিয়োগ কৰক৷
3\left(x-2\right)=y-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলক y, 1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y-1,3 ৰ সাধাৰণ বিভাজক৷
3x-6=y-1
3ক x-2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x-6-y=-1
দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
3x-y=-1+6
উভয় কাষে 6 যোগ কৰক।
3x-y=5
5 লাভ কৰিবৰ বাবে -1 আৰু 6 যোগ কৰক৷
3x-2y=1,3x-y=5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}+\frac{2}{3}\times 5\\-1+5\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
গণনা কৰক৷
x=3,y=4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3\left(x+1\right)=2\left(y+2\right)
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ চলক y, -2ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y+2\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y+2,3 ৰ সাধাৰণ বিভাজক৷
3x+3=2\left(y+2\right)
3ক x+1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3=2y+4
2ক y+2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+3-2y=4
দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
3x-2y=4-3
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
3x-2y=1
1 লাভ কৰিবলৈ 4-ৰ পৰা 3 বিয়োগ কৰক৷
3\left(x-2\right)=y-1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলক y, 1ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ 3\left(y-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও y-1,3 ৰ সাধাৰণ বিভাজক৷
3x-6=y-1
3ক x-2ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x-6-y=-1
দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
3x-y=-1+6
উভয় কাষে 6 যোগ কৰক।
3x-y=5
5 লাভ কৰিবৰ বাবে -1 আৰু 6 যোগ কৰক৷
3x-2y=1,3x-y=5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x-3x-2y+y=1-5
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x-2y=1-ৰ পৰা 3x-y=5 হৰণ কৰক৷
-2y+y=1-5
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-y=1-5
y লৈ -2y যোগ কৰক৷
-y=-4
-5 লৈ 1 যোগ কৰক৷
y=4
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-4=5
3x-y=5-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x=9
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x=3
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}