\left. \begin{array} { l } { p = 12 }\\ { q = 24 }\\ { r = p + q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { z = y }\\ { a = z }\\ { b = a }\\ { \text{Solve for } c \text{ where} } \\ { c = b } \end{array} \right.
p, q, r, s, t, u, v, w, x, y, z, a, b, c-ৰ বাবে সমাধান কৰক
c=36
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
r=12+24
তৃতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
r=36
36 লাভ কৰিবৰ বাবে 12 আৰু 24 যোগ কৰক৷
s=36
চতুৰ্থ সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
t=36
পঞ্চম সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
u=36
সমীকৰণ (6) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
v=36
সমীকৰণ (7) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
w=36
সমীকৰণ (8) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
x=36
সমীকৰণ (9) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
y=36
সমীকৰণ (10) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
z=36
সমীকৰণ (11) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
a=36
সমীকৰণ (12) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
b=36
সমীকৰণ (13) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
c=36
সমীকৰণ (14) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
p=12 q=24 r=36 s=36 t=36 u=36 v=36 w=36 x=36 y=36 z=36 a=36 b=36 c=36
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}