\left. \begin{array} { l } { f {(t)} = \frac{3 t + 3}{5} }\\ { g = f {(5)} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { \text{Solve for } q \text{ where} } \\ { q = p } \end{array} \right.
f, t, g, h, j, k, l, m, n, o, p, q-ৰ বাবে সমাধান কৰক
q=i
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
h=i
চতুৰ্থ সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
i=g
তৃতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
g=i
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
i=f\times 5
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
\frac{i}{5}=f
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
\frac{1}{5}i=f
\frac{1}{5}i লাভ কৰিবলৈ 5ৰ দ্বাৰা i হৰণ কৰক৷
f=\frac{1}{5}i
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
\frac{1}{5}it=\frac{3t+3}{5}
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
it=3t+3
5-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
it-3t=3
দুয়োটা দিশৰ পৰা 3t বিয়োগ কৰক৷
\left(-3+i\right)t=3
\left(-3+i\right)t লাভ কৰিবলৈ it আৰু -3t একত্ৰ কৰক৷
t=\frac{3}{-3+i}
-3+i-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
t=\frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
হৰ -3-iৰ জটিল অনুবন্ধীৰ দ্বাৰা \frac{3}{-3+i}ৰ লব আৰু হৰ দুয়োটা পূৰণ কৰক৷
t=\frac{-9-3i}{10}
\frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}ত গুণনিয়ক কৰক৷
t=-\frac{9}{10}-\frac{3}{10}i
-\frac{9}{10}-\frac{3}{10}i লাভ কৰিবলৈ 10ৰ দ্বাৰা -9-3i হৰণ কৰক৷
f=\frac{1}{5}i t=-\frac{9}{10}-\frac{3}{10}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}