x, y, z, a, b, c-ৰ বাবে সমাধান কৰক
c = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2\left(3\times 2+1\right)=\left(1\times 2+1\right)x-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ 2-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
2\left(6+1\right)=\left(1\times 2+1\right)x-2
6 লাভ কৰিবৰ বাবে 3 আৰু 2 পুৰণ কৰক৷
2\times 7=\left(1\times 2+1\right)x-2
7 লাভ কৰিবৰ বাবে 6 আৰু 1 যোগ কৰক৷
14=\left(1\times 2+1\right)x-2
14 লাভ কৰিবৰ বাবে 2 আৰু 7 পুৰণ কৰক৷
14=\left(2+1\right)x-2
2 লাভ কৰিবৰ বাবে 1 আৰু 2 পুৰণ কৰক৷
14=3x-2
3 লাভ কৰিবৰ বাবে 2 আৰু 1 যোগ কৰক৷
3x-2=14
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
3x=14+2
উভয় কাষে 2 যোগ কৰক।
3x=16
16 লাভ কৰিবৰ বাবে 14 আৰু 2 যোগ কৰক৷
x=\frac{16}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{16}{3}+2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
y=\frac{22}{3}
\frac{22}{3} লাভ কৰিবৰ বাবে \frac{16}{3} আৰু 2 যোগ কৰক৷
z=\frac{22}{3}
তৃতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
a=\frac{22}{3}
চতুৰ্থ সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
b=\frac{22}{3}
পঞ্চম সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
c=\frac{22}{3}
সমীকৰণ (6) বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
x=\frac{16}{3} y=\frac{22}{3} z=\frac{22}{3} a=\frac{22}{3} b=\frac{22}{3} c=\frac{22}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}