মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-0.5x=1
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 0.5x বিয়োগ কৰক৷
y-0.5x=1,3y+x=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-0.5x=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=0.5x+1
সমীকৰণৰ দুয়োটা দিশতে \frac{x}{2} যোগ কৰক৷
3\left(0.5x+1\right)+x=1
অন্য সমীকৰণত y-ৰ বাবে \frac{x}{2}+1 স্থানাপন কৰক, 3y+x=1৷
1.5x+3+x=1
3 বাৰ \frac{x}{2}+1 পুৰণ কৰক৷
2.5x+3=1
x লৈ \frac{3x}{2} যোগ কৰক৷
2.5x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
x=-0.8
2.5-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
y=0.5\left(-0.8\right)+1
y=0.5x+1-ত x-ৰ বাবে -0.8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-0.4+1
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি 0.5 বাৰ -0.8 পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
y=0.6
-0.4 লৈ 1 যোগ কৰক৷
y=0.6,x=-0.8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-0.5x=1
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 0.5x বিয়োগ কৰক৷
y-0.5x=1,3y+x=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-0.5\times 3\right)}&-\frac{-0.5}{1-\left(-0.5\times 3\right)}\\-\frac{3}{1-\left(-0.5\times 3\right)}&\frac{1}{1-\left(-0.5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.4&0.2\\-1.2&0.4\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2+1}{5}\\\frac{-6+2}{5}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.6\\-0.8\end{matrix}\right)
গণনা কৰক৷
y=0.6,x=-0.8
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-0.5x=1
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 0.5x বিয়োগ কৰক৷
y-0.5x=1,3y+x=1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3y+3\left(-0.5\right)x=3,3y+x=1
y আৰু 3y সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
3y-1.5x=3,3y+x=1
সৰলীকৰণ৷
3y-3y-1.5x-x=3-1
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3y-1.5x=3-ৰ পৰা 3y+x=1 হৰণ কৰক৷
-1.5x-x=3-1
-3y লৈ 3y যোগ কৰক৷ চৰ্তাৱলী 3y আৰু -3y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-2.5x=3-1
-x লৈ -\frac{3x}{2} যোগ কৰক৷
-2.5x=2
-1 লৈ 3 যোগ কৰক৷
x=-0.8
-2.5-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
3y-0.8=1
3y+x=1-ত x-ৰ বাবে -0.8-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3y=1.8
সমীকৰণৰ দুয়োটা দিশতে 0.8 যোগ কৰক৷
y=0.6
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=0.6,x=-0.8
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷