মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-\frac{1}{3}x=7
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{1}{3}x বিয়োগ কৰক৷
y-\frac{1}{3}x=7,y+x=3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-\frac{1}{3}x=7
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=\frac{1}{3}x+7
সমীকৰণৰ দুয়োটা দিশতে \frac{x}{3} যোগ কৰক৷
\frac{1}{3}x+7+x=3
অন্য সমীকৰণত y-ৰ বাবে \frac{x}{3}+7 স্থানাপন কৰক, y+x=3৷
\frac{4}{3}x+7=3
x লৈ \frac{x}{3} যোগ কৰক৷
\frac{4}{3}x=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7 বিয়োগ কৰক৷
x=-3
\frac{4}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
y=\frac{1}{3}\left(-3\right)+7
y=\frac{1}{3}x+7-ত x-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-1+7
\frac{1}{3} বাৰ -3 পুৰণ কৰক৷
y=6
-1 লৈ 7 যোগ কৰক৷
y=6,x=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-\frac{1}{3}x=7
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{1}{3}x বিয়োগ কৰক৷
y-\frac{1}{3}x=7,y+x=3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{1-\left(-\frac{1}{3}\right)}\\-\frac{1}{1-\left(-\frac{1}{3}\right)}&\frac{1}{1-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 7+\frac{1}{4}\times 3\\-\frac{3}{4}\times 7+\frac{3}{4}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
গণনা কৰক৷
y=6,x=-3
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-\frac{1}{3}x=7
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{1}{3}x বিয়োগ কৰক৷
y-\frac{1}{3}x=7,y+x=3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-\frac{1}{3}x-x=7-3
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-\frac{1}{3}x=7-ৰ পৰা y+x=3 হৰণ কৰক৷
-\frac{1}{3}x-x=7-3
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{4}{3}x=7-3
-x লৈ -\frac{x}{3} যোগ কৰক৷
-\frac{4}{3}x=4
-3 লৈ 7 যোগ কৰক৷
x=-3
-\frac{4}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
y-3=3
y+x=3-ত x-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=6
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
y=6,x=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷