মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-y=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
4y+2x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
x-y=6,2x+4y=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-y=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=y+6
সমীকৰণৰ দুয়োটা দিশতে y যোগ কৰক৷
2\left(y+6\right)+4y=0
অন্য সমীকৰণত x-ৰ বাবে y+6 স্থানাপন কৰক, 2x+4y=0৷
2y+12+4y=0
2 বাৰ y+6 পুৰণ কৰক৷
6y+12=0
4y লৈ 2y যোগ কৰক৷
6y=-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
y=-2
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2+6
x=y+6-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=4
-2 লৈ 6 যোগ কৰক৷
x=4,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-y=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
4y+2x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
x-y=6,2x+4y=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-1}{4-\left(-2\right)}\\-\frac{2}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6\\-\frac{1}{3}\times 6\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
গণনা কৰক৷
x=4,y=-2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-y=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
4y+2x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
x-y=6,2x+4y=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x+2\left(-1\right)y=2\times 6,2x+4y=0
x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2x-2y=12,2x+4y=0
সৰলীকৰণ৷
2x-2x-2y-4y=12
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x-2y=12-ৰ পৰা 2x+4y=0 হৰণ কৰক৷
-2y-4y=12
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-6y=12
-4y লৈ -2y যোগ কৰক৷
y=-2
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+4\left(-2\right)=0
2x+4y=0-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-8=0
4 বাৰ -2 পুৰণ কৰক৷
2x=8
সমীকৰণৰ দুয়োটা দিশতে 8 যোগ কৰক৷
x=4
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=4,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷