মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=3600,4x+2y=11000
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=3600
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+3600
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
4\left(-y+3600\right)+2y=11000
অন্য সমীকৰণত x-ৰ বাবে -y+3600 স্থানাপন কৰক, 4x+2y=11000৷
-4y+14400+2y=11000
4 বাৰ -y+3600 পুৰণ কৰক৷
-2y+14400=11000
2y লৈ -4y যোগ কৰক৷
-2y=-3400
সমীকৰণৰ দুয়োটা দিশৰ পৰা 14400 বিয়োগ কৰক৷
y=1700
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-1700+3600
x=-y+3600-ত y-ৰ বাবে 1700-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=1900
-1700 লৈ 3600 যোগ কৰক৷
x=1900,y=1700
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=3600,4x+2y=11000
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\11000\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3600+\frac{1}{2}\times 11000\\2\times 3600-\frac{1}{2}\times 11000\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1900\\1700\end{matrix}\right)
গণনা কৰক৷
x=1900,y=1700
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=3600,4x+2y=11000
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4x+4y=4\times 3600,4x+2y=11000
x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
4x+4y=14400,4x+2y=11000
সৰলীকৰণ৷
4x-4x+4y-2y=14400-11000
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 4x+4y=14400-ৰ পৰা 4x+2y=11000 হৰণ কৰক৷
4y-2y=14400-11000
-4x লৈ 4x যোগ কৰক৷ চৰ্তাৱলী 4x আৰু -4x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
2y=14400-11000
-2y লৈ 4y যোগ কৰক৷
2y=3400
-11000 লৈ 14400 যোগ কৰক৷
y=1700
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x+2\times 1700=11000
4x+2y=11000-ত y-ৰ বাবে 1700-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x+3400=11000
2 বাৰ 1700 পুৰণ কৰক৷
4x=7600
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3400 বিয়োগ কৰক৷
x=1900
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1900,y=1700
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷