মুখ্য সমললৈ এৰি যাওক
a, b-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{2}a+b=-2,a-2b=8
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
\frac{1}{2}a+b=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে a পৃথক কৰি aৰ বাবে ইয়াক সমাধান কৰক৷
\frac{1}{2}a=-b-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা b বিয়োগ কৰক৷
a=2\left(-b-2\right)
2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
a=-2b-4
2 বাৰ -b-2 পুৰণ কৰক৷
-2b-4-2b=8
অন্য সমীকৰণত a-ৰ বাবে -2b-4 স্থানাপন কৰক, a-2b=8৷
-4b-4=8
-2b লৈ -2b যোগ কৰক৷
-4b=12
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
b=-3
-4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-2\left(-3\right)-4
a=-2b-4-ত b-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
a=6-4
-2 বাৰ -3 পুৰণ কৰক৷
a=2
6 লৈ -4 যোগ কৰক৷
a=2,b=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
\frac{1}{2}a+b=-2,a-2b=8
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{\frac{1}{2}\left(-2\right)-1}&-\frac{1}{\frac{1}{2}\left(-2\right)-1}\\-\frac{1}{\frac{1}{2}\left(-2\right)-1}&\frac{\frac{1}{2}}{\frac{1}{2}\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2+\frac{1}{2}\times 8\\\frac{1}{2}\left(-2\right)-\frac{1}{4}\times 8\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
গণনা কৰক৷
a=2,b=-3
মেট্ৰিক্স উপাদান a আৰু b নিষ্কাষিত কৰক৷
\frac{1}{2}a+b=-2,a-2b=8
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{1}{2}a+b=-2,\frac{1}{2}a+\frac{1}{2}\left(-2\right)b=\frac{1}{2}\times 8
\frac{a}{2} আৰু a সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ \frac{1}{2}-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{1}{2}a+b=-2,\frac{1}{2}a-b=4
সৰলীকৰণ৷
\frac{1}{2}a-\frac{1}{2}a+b+b=-2-4
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{1}{2}a+b=-2-ৰ পৰা \frac{1}{2}a-b=4 হৰণ কৰক৷
b+b=-2-4
-\frac{a}{2} লৈ \frac{a}{2} যোগ কৰক৷ চৰ্তাৱলী \frac{a}{2} আৰু -\frac{a}{2} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
2b=-2-4
b লৈ b যোগ কৰক৷
2b=-6
-4 লৈ -2 যোগ কৰক৷
b=-3
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a-2\left(-3\right)=8
a-2b=8-ত b-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
a+6=8
-2 বাৰ -3 পুৰণ কৰক৷
a=2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
a=2,b=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷