মুখ্য সমললৈ এৰি যাওক
ডিটাৰমিনেণ্ট গণনা কৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ভাগ-বতৰা কৰক

det(\left(\begin{matrix}1&-2&0\\4&-2&-1\\-3&1&2\end{matrix}\right))
ডাইগ'নেল্সৰ পদ্ধতি ব্যৱহাৰ কৰি মেট্ৰিক্সৰ ডিটাৰমিনেণ্ট বিচাৰক৷
\left(\begin{matrix}1&-2&0&1&-2\\4&-2&-1&4&-2\\-3&1&2&-3&1\end{matrix}\right)
প্ৰথম দুটা স্তম্ভক চতুৰ্থ আৰু পঞ্চম স্তম্ভ ৰূপে পুনৰাবৰ্তিত কৰি মূল মেট্ৰিক্সক বিস্তাৰ কৰক৷
-2\times 2-2\left(-1\right)\left(-3\right)=-10
ওপৰৰ বাঁও দিশৰ এন্ট্ৰীৰ পৰা আৰম্ভ কৰি, কোণীয়াকৈ তললৈ থকা এণ্ট্ৰী পুৰণ কৰক আৰু গুণফলৰ ফলাফল যোগ কৰক৷
-1+2\times 4\left(-2\right)=-17
একেবাৰে নিম্নদিশৰ বাঁও এণ্ট্ৰীৰ পৰা আৰম্ভ কৰি, ডায়েগনেলৰ সৈতে পুৰণ কৰক আৰু ফলাফলৰ গুণফলসমূহ যোগ কৰক৷
-10-\left(-17\right)
নিম্নদিশৰ ডায়েগ'নেল গুণফলসমূহৰ পৰা ওপৰ দিশৰ ডায়েগ'নেল গুণফলৰ যোগফলক বিয়োগ কৰক৷
7
-10-ৰ পৰা -17 বিয়োগ কৰক৷
det(\left(\begin{matrix}1&-2&0\\4&-2&-1\\-3&1&2\end{matrix}\right))
এক্সপ্ৰেচন বাই মাইনোৰচ পদ্ধতি ব্যৱহাৰ কৰি মেট্ৰিক্সৰ ডিটাৰমিনেন্ট বিচাৰক (ইয়াক এক্সপ্ৰেশ্বন বাই কোফেক্টৰ বুলিও জনা যায়)৷
det(\left(\begin{matrix}-2&-1\\1&2\end{matrix}\right))-\left(-2det(\left(\begin{matrix}4&-1\\-3&2\end{matrix}\right))\right)
মাইন'ৰৰ দ্বাৰা বিস্তাৰ কৰিবলৈ, প্ৰথম শাৰীৰ মাইন'ৰৰ দ্বাৰা প্ৰতিটো উপাদান পুৰণ কৰক, যিটো সেই উপাদান থকা শাৰী আৰু স্তম্ভ বিলোপ কৰি সৃষ্টি কৰা 2\times 2 মেট্ৰিক্সৰ ডিটাৰমিনেণ্ট, তাৰপিছত উপাদানটোৰ অৱস্থাৰ চিহ্নৰ দ্বাৰা পূৰণ কৰক।
-2\times 2-\left(-1\right)-\left(-2\left(4\times 2-\left(-3\left(-1\right)\right)\right)\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, নিৰ্ধাৰক ad-bc৷
-3-\left(-2\times 5\right)
সৰলীকৰণ৷
7
চুড়ান্ত ফলাফল লাভ কৰিবলৈ পদসমূহ যোগ কৰক৷